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Abstract

In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model is
proposed to deal with interfacial multiphase �uid �ows simulation. A Con-
tinuum Stress Surface formulation (CSS) [1] was developed in the framework
of SPH method using a non-conservative �rst order consistency operator to
calculate the divergence of stress surface tensor. This enables the enhance-
ment of the stability near the �uid interface. This formulation bene�ts of all
the advantages of the one proposed by Adami et al [2] and, in addition, it
can be applied to more than two phases �uid �ow simulations. The general-
ized wall boundary conditions [3] are modi�ed in order to be well adapted to
multiphase �uid �ows with di�erent density and viscosity. A particle redis-
tribution strategy is proposed R1: as an extension of the damping technique
presented in [3] to adequately initialize the conditions of gravitational mul-
tiphase �uid �ows. This strategy is based on the gradual application of a
damping technique to mitigate gravity force in both momentum and pressure
wall boundary condition equations. Several computational tests are investi-
gated to show the accuracy and convergence of the proposed SPH interfacial
multiphase model. Moreover, a simulation of a rising bubble crossing two
strati�ed �uid layers is performed with more challenging constraints such as
high density ratio, high viscosity ratio, and with presence of triple points
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junction, and compared with the experimental results of Bonhomme et al
[4]. Finally, we show the interaction between two rising bubbles test.

Keywords: Smoothed Particle Hydrodynamics, multiphase �uid �ow,
interfacial �uid �ow, surface tension formulation, damping initial condition,
Predictor-Corrector integration scheme, High density and viscosity ratio

Highlights

� A consistent SPH model was proposed to deal with interfacial multi-
phase �uid �ow simulations;

� Robust non-conservative surface tension formulation that respects its
tangential character to deal with two and more interfacial �uid phases;

� Validation of the proposed SPH model via the application on several
challenging test cases of multiphase �uid �ows;

� Experimental veri�cation of applicability and accuracy of the proposed
SPH interfacial multiphase model;

1. Introduction

In recent decades, modeling of multiphase �uid �ows has been taken a large
interest of researchers, scientists and engineers, due to its large applications
in natural and industrial �elds. Numerical models in both Mesh-based and
Meshless-based approaches are available to deal with multiphase �uid �ows
simulations problems via the discretization of Navier-Stokes equations. In
the context of grid-based approach,techniques for the capturing or tracking of
interface phases are usually required. The most common techniques include
the VOF (Volume Of Fluid) method [5], the LS (level set) method [6] and
the front tracking method [7] [8]. The main drawback of these techniques is
the di�culty to predict the evolution of a moving interface. The inaccurate
prediction of the evolution of interface phases causes subsequently a wrong
approximation of its curvature and normal vector which explicitly causes
errors in terms of surface tension forces. The use of adaptive mesh re�nement
algorithms [9] can minimize these errors. However, the generation of a large
amount of grid cells in these methods leads to a large computational time.
The Smoothed Particle Hydrodynamics (SPH) method, is a meshless method
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that has the ability to deal with moving interfaces naturally, without using
any algorithm for interface tracking. This method was �rst developed in 1977
to treat astrophysical simulations [10] [11]. Later, in 1988 it was applied to
the simulation of �uid �ows [12]. Since then, the SPH method has received
lots of attention and large improvements have been developed.

In the context of SPH method, several surface tension formulations were
developed to deal with multiphase �uid �ows problems. Most of them are
based on the continuum surface force (CSF) method developed by Brackbill
et al [1] or with its variant, the Continuum Stress Surface (CSS) method [13].
For more details please refer to the Appendix A). CSF and CSS methods
were initially developed for mesh-based applications. Morris [14] extended
these formulations to meshless applications in the framework of the SPH
method. Hu and Adams reported in [15] that when the CSS formulation
is applied, a negative pressure contribution to the surface stress according
to the momentum equation is observed. This negative pressure might cause
instability problems near to the �uids interface.R1: Therefore, Hu and
Adams [15] have evaluated this contribution of negative pressure and proposed
a modi�cation to the CSS formulation in order to eliminate it . Afterwards,
this formulation was applied to many multiphase �uid �ows applications
[16][17] [18] [19] [20]. However, as it is reported in [21], this formulation
does not ful�ll the tangential character of the surface stress tensor (capillary
pressure tensor). For more details about the tangential character please refer
to Appendix B. An alternative formulation of the surface tension for SPH
was presented in [22] [23] [24]. This formulation consider SPH particles as real
�uid particles with attractive/repulsive forces among them. De�ning these
forces to reproduce the e�ects of surface tension obtained promising results
in several test cases involving drops and �ow through fractured media.

In this work, we present an extension of the surface tension formulation
proposed by Adami et al [2] to be applicable in the case of more than two
�uid phases simulations. It is based on the Continuum Stress Surface for-
mulation (CSS) [1]. On the one hand, the proposed formulation enhances
the stability by using a �rst order consistency approximation to calculate
the divergence operator. On the other hand, this formulation respects the
physical tangential character (as it is shown in appendix B). Similarly to [2],
in this formulation the e�ect of the surface tension is added as a body force.
The proposed formulation bene�ts of all the advantages of the formulation
of Adami et al [2], and in addition, it can be applied to simulations with
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more than two �uid phases. These advantages make our surface tension for-
mulation as a good alternative to the one proposed by Adams and Hu [15]
which is widely used in the context of SPH method [16][17] [18] [19] [20].
However, and similarly to [2], the formulation does not conserve exactly the
total momentum.

Moreover, we present an extension of the damping technique presented in
[3] to allows for simulations of multiphase gravitational interfacial �uid �ows.
This technique treats the jump in initial pressure condition via the acceler-
ation and redistribution of the initial particle distribution. This procedure
has a stabilization e�ect during the simulation process. In addition, we also
present a modi�cation of generalized wall boundary conditions for using the
SPH method in multi-phase �uid �ows.

A series of benchmarks are performed to show the e�ciency of the pro-
posed formulation. These benchmarks are organized on three categories test:
the �rst category is dedicated to test the consistency and the convergence of
the proposed non-conservative surface tension force formulation. The second
one investigates the ability of the presented SPH model to simulate mul-
tiphase �uid �ows caused by the gravity acceleration e�ect (gravitational
multiphase �uid �ows). The third category regroups the �rst two ones, with
some more challenging physical constraints (high ratio of density and viscos-
ity and presence of triple point junction [25]). The obtained results show
good agreement comparing with the analytical, numerical, and experimental
ones available in literature.

2. Multiphase model

2.1. Governing equations

In this work we assume a weakly compressible viscous �uid �ow in isother-
mal conditions. Under these hypothesis, the Navier-Stokes and displacement
equations expressed in Lagrangian form read as





dρ
dt

= −ρ∇.v
dv
dt

= 1
ρ

(
−∇p+ FV is + FST

)
+ g

dr
dt

= v

(1)

where d(.)
dt

represents the material derivative following an in�nitesimal �uid
element. ∇ is the nabla operator (gradient), ρ, p,v, r and g represent density,
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pressure, velocity vector, position vector, and the gravitational acceleration
vector, respectively. FVis and FST denote the viscous and surface tension
forces, respectively.

The weakly compressible smoothed particle hydrodynamics approach (WC-
SPH) was used in this work [26]. In order to close the system (1)it is required
the use of an equation of state (EOS) which explicitly de�nes the pressure
from the density instead to solve the Poisson equation. In this work the
isothermal equation of state [14] is used which is expressed as

p = pr

{(
ρ

ρ0

)
− 1

}
+ pb (2)

where ρ0, pr and pb denote the reference density, the reference pressure, and
the background pressure, respectively. For the linear constitutive equation of
state given by equation(2) the reference pressure is a function of the reference
density and reference speed of sound c0

pr = ρ0c
2
0 (3)

The use of the physical speed of sound R2: cphy as a reference leads to a
very small time step according to the stability conditions explained in 2.4,
which causes a very large computational time. It is then a common practice
to use an arti�cial speed of sound as a reference. Thus, following [14] and
[27] the value of c0 is determined here as

c2
0 ≥ max

{
U2

0

δρ
,
‖g‖L0

δρ
,

σ

ρ0L0δρ
,
µU0

ρ0L0δρ

}
(4)

Where U0, L0, µ and σ are the reference velocity, reference length, dynamic
viscosity and surface tension coe�cient, respectively. δρ denote the dimen-
sionless density variation which is set to 1% (δρ = 0.01 ).

In the case of multiphase �uid �ows, the reference pressure is chosen to be
identical for all �uid phases, following [28]. Therefore, the speed of sound in
each phase will be di�erent in such a way that the reference pressure for all
�uid phases will be conserved.

pr = pr1 = ... = prNf (5)
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pr = ρ01c
2
01

= ... = ρ0Nf
c2

0Nf
. (6)

where the subscript Nf denotes the number of �uid phases. This condition
enhances the numerical stability of the computations [28]. Hence, the choice
of the arti�cial speed of sound c0 is taken in such a way that both equations
4 and 6 are satis�ed in all �uid phases.

For numerical problems involving single-phase free surface �uid �ows, the
background pressure is generally set to zero (pb = 0). Furthermore, for simu-
lations of single or multiphase con�ned �uid �ows, the pressure is chosen as a
positive value su�cient to guarantee the positivity of the calculated pressure
�eld via the equation of state in order to avoid the tensile instability [29]. In
this work, the numerical experiments show that the ideal background pres-
sure pb is chosen as a function of the reference pressure and it is proportional
to 0.05pr (i.e : pb ∝ 0.05pr).

2.2. Discrete form of governing equations

The smoothed particle hydrodynamics is a meshless method. It discretizes
the physical space into many R1: discrete elements, usually called particles,
without any connectivity among them. This method is based on the approxi-
mation of any physical scalar (or vector) �eld using the convolution formula-
tion. Numerically, it is performed by replacing the Dirac delta function with
a regular smooth function, which is called kernel. This function must satisfy
some conditions such as symmetry (even function), normalization, compact-
ness of it support, among others. We refer the interested reader to [30] for
more details. The kernel function used in this work is the quintic spline [31]
(equation 7) . This kernel was selected since it prevents a high disorder in the
particle distribution. The kernel function depends on a parameter h, called
the smoothing length, which de�nes the domain of in�uence of the kernel
function. In this work, the smoothing length h is a constant which is chosen
relative to the initial inter-particle distance δx0 (h = 1.33δx0). The initial
particle volume is taken as V0 = δx0

d, with d is the space dimension number.
The mass of each particle i of di�erent �uid phases is chosen to be constant
and equal to m = ρ0PhaseV0 during all the simulation time.
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W (r, h) = αd





(3− r
h
)5 − 6(2− r

h
)5 + 15(1− r

h
)5 0 ≤ r

h
< 1

(3− r
h
)5 − 6(2− r

h
)5 1 ≤ r

h
< 2

(3− r
h
)5 2 ≤ r

h
< 3

0 r
h
≥ 3

(7)

where αd = 7
478h2π

for 2D cases, and r is the distance between two neighboring
particles i and j (r = rij = ‖ri − rj‖).
Hu and Adams [15] developed a formulation that exactly guarantees mass
conservation. In this formulation, the continuity equation of the Navier-
Stokes system (1), can be replaced by the expression

ρi = mi

nb∑

j

Wij (8)

where ρi and mi are the density and the mass of the particle i, respectively.
Wij = W (rij, h) is the Kernel function, rij = ri−rj is the distance between the
particle i and its neighbours j. The number of particles in the neighborhood
of particle i is denoted as nb.
This formulation is widely used in SPH codes, and it works very well in the
case of con�ned �uid �ow simulations and allows the use of higher values of
the CFL number. However, this formulation is very sensitive to the particle
disorder. Subtle variations in the particle positions cause high �uctuations in
the particle density and thus in pressure specially in the case of gravitational
�uid �ows. This problem can be alleviated by an adequate redistribution and
acceleration of the initial particle positions and velocities by using a damping
technique that will be detailed in Section 2.5.

dvi

dt
=

1

ρi

(
−∇pi + Fi

V is + Fi
ST
)

+ gi (9)

The acceleration of the particle i due to the gradient of pressure is approxi-
mated following the work in [2] as

1

ρi
∇pi =

1

mi

nb∑

j

(
V 2
i + V 2

j

)
p̃ij∇Wij (10)
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Where Vi = mi
ρi

is the volume of particle i. The term
(
∇Wij = ∂W

∂rij
eij

)
is the

gradient of the kernel function, and eij =
rij
rij

=
ri−rj
rij

is the unit inter-particle
vector.

The term p̃ij is de�ned to ensure the continuity of pressure even for the
case of discontinuous density between �uid particles (for example, when they
belongs to di�erent phases). Following [32] this term reads as

p̃ij =
ρjpi + ρipj
ρi + ρj

(11)

The acceleration due to the viscous forces can be expressed as in [2]

1

ρi
Fi

V is =
1

mi

nb∑

j

(
V 2
i + V 2

j

)
µ̃ij

vij

rij

∂W

∂rij
(12)

Where vij = vi−vj is the relative velocity between the particle i and j. The
term µ̃ij is the inter-particle-averaged dynamic viscosity which is de�ned as

µ̃ij =
2µiµj
µi + µj

(13)

In equation (13), µi is the dynamic viscosity of the particle i.

This form of viscous acceleration conserves the linear momentum [2], and
performs well in the case of short-time simulations. In this work we have
chosen an alternative formulation [33] which conserves both angular and
linear momentum in order to perform long-time simulations. This alternative
formulation reads as

1

ρi
Fi

V is =
ζ

mi

nb∑

j

(
V 2
i + V 2

j

)
µ̃ij

vijrij
r2
ij

∇Wij (14)

Where ζ = d+ 2, and d is the space dimension number.

2.2.1. The surface tension force:

In the case of a two-phase �uid, a Continuum Surface Force (CSF) formula-
tion [1] may be used to represent the surface tension force. This formulation
describes the pressure-jump condition normal to the separation interface of
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the �uids. Assuming that the surface tension coe�cient σ(1−2) is constant be-
tween two �uid phases (1 and 2), the expression of the force can be expressed
as

FST(1−2) = −σ(1−2)κ n δΣ (15)

In equation (15), κ, n and δΣ denote the curvature, the normal vector to the
interface (see �gure 17) and the delta function, respectively. In the context
of the SPH method, equation (15) reads as

F
ST(1−2)

i = −σ(1−2) ∇ · ni ∇C (16)

where C is the color function that has a unit jump across the interface. It's
equal to 1 in one particle �uid phase and 0 in its neighboring particle of other
�uid phase.

Figure 1: Geometrical description of the principal parameter of surface tension formulation
in the case of two immiscible �uids 1 and 2: interface, transition region, normal vector n.
The thickness of the transition region is equivalent to the diameter of the kernel function
(6h for the quintic kernel function)

.

The previous formulation for the surface tension force is applicable in the
case of two-phase �uid �ows. If more than two phases are present in the
�ow, the explicit use of this formulation becomes impractical in the context
of SPH method.
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Thus, an alternative formulation should be used in these cases. The Con-
tinuum Surface Stress (CSS) [13] is a tensorial formulation of the surface
tension force equivalent to the CSF formulation given in equation (16). The
CSS formulation can be expressed as a body force applied through a transi-
tion region of �nite thickness. The size of this �nite thickness is equal to the
diameter of Kernel function (see �gure 1)

FST
i = ∇ ·Πi (17)

where Πi de�nes the immiscible mixture surface stress tensor of the particle
i (capillary pressure tensor). Assuming that the particle i belongs to the l
�uid phase, then the mixture surface stress can be expressed as

Πi =
∑

k 6=l

Πkl
i (18)

In equation 18, Πkl
i is the �uid surface stress tensor between phases k and l,

de�ned as

Πkl
i =

σkl

‖∇Ckl
i ‖
(
‖∇Ckl

i ‖2I−∇Ckl
i ⊗∇Ckl

i

)
(19)

By assuming that the particle i belongs to the phase l, the gradient of the
color function at the interface between two di�erent phases k and l (∇Ckl

i )
reads as [2]

∇Ckl
i =

1

Vi

nb∑

j

(
V 2
i + V 2

j

)
C̃kl
ij ∇Wij (20)

The inter-particle-averaged color function C̃kl
ij is de�ned as

C̃kl
ij =

{
ρi

ρi+ρj
if the particle j belongs to the k �uid phase

0 Otherwise
(21)

The CSS formulation given by equations (18) and (19) is a variation of
the CSF formulation (equation (15)). The relation between the CSF and the
CSS formulations is presented in the Appendix A. In the CSS formulation,
the interior e�orts associated to the surface stress tensor Π are tangent to
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the interface, which is coherent with the propriety of surface tension force
(the details are presented in the Appendix B ) The direct application of the
CSS formulation given in equation (17) in the context of the SPH method,
could lead to numerical instabilities [14, 15, 2].

R1: In this work, the divergence formulation used in [2] for the calcula-
tion of the curvature of the interface is adopted to calculate the divergence
of the capillary pressure tensor (equation (17)). This formulation does not
require a matrix inversion and gives a �rst-order consistency approximation.
Or in other words, This formulation can reproduce exactly the divergence of
any linear �eld .Thus, the modi�ed discrete form of equation (17) is

FST
i = d

nb∑

j

VjΠij∇Wij

nb∑

j

Vjrij
∂W

∂rij

(22)

where we de�ne the inter-particle surface stress tensor as Πij = Πi −Πj, d
is the number of space dimensions and rij = ‖ri − rj‖ is the inter-particle
distance.

R1: Note that with this formulation, the surface tension force does not ex-
actly conserve the total momentum. However, It grantees a good approxima-
tion even when a disordered particles distribution is presented or the support
of the kernel function is not full with particles contained within the transition
region. This force takes the e�ect as a body one. This formulation takes all
advantageous of the formulation proposed in [2], and in addition it can be ap-
plicable in the case of more than two-phases �uid �ows simulation problems.

2.3. Wall boundary conditions

In this work, we also present a modi�cation of the generalized wall boundary
condition method proposed by [3] to deal with multiphase �uid �ows. In
this method, three layers of dummy particles must be added in the normal
direction to the wall interface (see �gure 2). The dummy particles are placed
to represent the wall in such a way that it is ensured the completeness of the
support of kernel function, in order to obtain an accurate integration of the

11



�eld variables near the wall interface. Free-slip or no-slip wall boundary con-
ditions can be applied using this method. The free-slip boundary condition
is applied by omitting the viscous interaction between the �uid particle with
the adjacent dummy particles in the calculation of �uid viscous forces (equa-
tion 14). In the case of no-slip wall boundary condition, a virtual velocity
vw is imposed to the wall-dummy particle interacting with the �uid particle
i in equation 14. This velocity is de�ned as

vw = 2vi − ṽi (23)

where vi is the prescribed velocity of wall particle i and ṽi denotes the in-
terpolation of the smoothed velocity �eld of the �uid phase to the dummy
particle position. The term nf refers to the number of neighboring �uid
particles j of the wall particle i.

ṽi =

nf∑

j

vjWij

nf∑

j

Wij

(24)

The pressure in the dummy-wall particle is calculated from the neighboring
�uid particles j according to [3]

pw =

nf∑

j

pjWwj + (g − aw)

nf∑

j

ρjrwjWwj

nf∑

j

Wwj

(25)

where the term aw represents a prescribed wall acceleration, if moving walls
are present.

The method proposed in [3] computes the density of the dummy particle via
the equation of state. This formulation is applicable for the case of single �uid
with constant viscosity or in case of multiphase inviscid �ows [34] [35] [36]. In
the case of multiphase viscous �ows where di�erent viscosities are associated
to each phase, this formulation becomes unusable because of the ambiguity
in the choice of the viscosity for the wall-dummy particles. This is specially
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Figure 2: Geometrical description of di�erent parameters used in the generalized wall
Boundary condition. Figure based on that presented in [3]

noted when the neighboring particles belong to di�erent �uid phases. Here
we solve this ambiguity by using a method based on the �uid particle mirror
similarity. We assume that each �uid particle considers all their wall-dummy
neighbor particles as similar to it in terms of density, viscosity and volume.
Using this approach we need to modify equations (10), (12) or (14) as follows

1

ρi
∇pi =

1

mi

nb∑

j

P̃Vij∇Wij (26)

1

ρi
Fi

V is =
1

mi

nb∑

j

µ̃ij
V vij

rij

∂W

∂rij
(27)

1

ρi
Fi

V is =
ζ

mi

nb∑

j

µ̃ij
V vijrij
r2
ij

∇Wij (28)

Where PVij and µ̃ijV are de�ned as

P̃Vij =

{(
V 2
i + V 2

j

) ρjpi+ρipj
ρi+ρj

if the particle j is a �uid particle

V 2
i (pi + pj) if the particle j is a wall particle

(29)
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µ̃ij
V =

{
2
(
V 2
i + V 2

j

) µiµj
µi+µj

if the particle j is a �uid particle

2V 2
i µi if the particle j is a wall particle

(30)

Note that the direct application of the proposed wall boundary condi-
tions method can present spurious currents when the interfaces between the
�uid phases includes a surface tension next to the wall boundaries. To deal
with this issue, a special treatment as proposed in [37] can be added to this
method. However, this problem is not addressed here since it is out of the
scope of the present work.

2.4. Time stepping

R1: In this work a Predictor-Corrector scheme is proposed for time integra-
tion. An explicit Euler method is used to predict the velocity (ṽn+1

i ) and the
position (r̃n+1

i ) of the particle i.
R1: The corrected velocity at n + 1 (vi

n+1) is approximated by using
trapezoidal-rule, using predicted parameters (̃.)n+1 instead of the �nal ones
(.)n+1. Note that, the density and pressure at time n (ρn, pn) and the pre-
dicted values of velocity and position (ṽn+1, r̃n+1)are used to predict the right

hand-side of momentum equation
(

d̃vi

dt

)n+1

. The �nal position ri
n+1 is ad-

vected by the corrected velocity.

The following algorithm summarizes the prediction step.

{
ṽn+1
i = vi

n + δt
(

dvi

dt

)n

r̃n+1
i = ri

n + δt
(

dri
dt

)n (31)

and the correction step is summarized as follows





vi
n+1 = vi

n + δt
2

{(
dvi

dt

)n
+
(

d̃vi

dt

)n+1
}

= 1
2

{
vi
n + ṽn+1

i

}
+ δt

2

(
d̃vi

dt

)n+1

ri
n+1 = ri

n + δtvi
n+1

(32)
The �nal density (at time n+1) is calculated as ρn+1

i = mi

∑nb
j W (r̃ij)

n+1.

Afterwards, the �nal pressure pn+1 = p(ρn+1) is calculated according to the
equation of state (2), pn+1 = p(ρn+1).
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The superscripts n and n + 1 refers to the time step, whereas {̃.} refers to
the predicted physical parameter {.} . For more details about the use of
this scheme in the context of interfacial multiphase SPH model please see
Appendix C.

To ensure the stability of the method, the time step (δt) must be chosen to
ful�ll the kinetic, viscous, body force and surface tension conditions [35] [1]

δt = CFL
h

max(c0i) +max(‖vi‖)
(33)

δt ≤ 0.125
h2

max( µi
ρ0i

)
(34)

δt ≤ 0.25

(
h

‖g‖

)1/2

(35)

δt ≤ 0.25

(
min(ρk, ρl)h

3

2πσk−l

)1/2

(36)

By using the density summation formulation (equation 8) with this time
integration scheme, the simulations were stable with CFL numbers equal to
one. In the numerical simulations presented here, a value of CFL = 1 is
employed.

2.5. Damping strategy for multiphase �uid �ow

In the framework of weakly compressible �uid �ows, the accuracy on the
determination of the pressure �eld using an equation of state depends on the
density estimation. Here, the density of the particles is updated using the
equation (8). It becomes obvious that a good estimation of the position of
the particles is crucial to obtain a good approximation of the pressure.

In this work, an initial regular lattice distribution of particles is chosen
to perform the simulation. However, in the context of gravitational �uid
�ow problems, the use of the density summation formulation (equation (8))
to update density (and thus the pressure with equation (2)) in a regular
distribution particles may spoil the imposed initial hydrostatic pressure and
cause spurious high-frequency oscillations. In single �uid �ow formulations,
such artifacts can be reduced using a damping technique during the initial
transient of simulations [3, 38]. This damping smooths both the distribution
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and the velocity of the particles to mitigate the oscillations. In fact, we
introduce a mitigation factor (ξD(t) ≤ 1) which acts as a multiplication
factor on the body force in the momentum equation (9) as well as in the wall
pressure equation 25, to obtain a gradual introduction of the gravity force.
The mitigation factor is only activated during the time TD (damping time),
and is de�ned as

ξD(t) =

{(
sin
(

t
TD
− 0.5

)
π + 1

)
t 6 TD

1 t > TD
(37)

Note that other expressions are possible instead of 37, as for example, the
Hill equation [39].

Unfortunately, these damping techniques [3, 38] are not applicable in the
case of the simulation involving gravitational multiphase �ows. This is due
to the di�erence in density between the �uid phases (buoyancy force), which
generates a considerable motion of the particles during the damping period.
To extend the application of this technique to gravitational multiphase �uid
�ow simulations, a new strategy must be de�ned. In this work, all the phys-
ical properties of all �uid phases (reference density, viscosity, mass ...) are
set to be equal to those of the heavier phase during the damping procedure,
in order to avoid any motion due to the di�erent properties between the
phases. This technique allows the particles to be slightly redistributed and
accelerated in order to reach a good estimation of the initial hydrostatic pres-
sure and velocity. After the damping time, the real physical properties must
be assigned again to each phase, and the calculation procedure continues as
usual. The reader is referred to Appendix C for more details about the use
of this technique in the case of interfacial multiphase �uid �ow simulations.

3. Numerical applications and validation

In this section we present several numerical examples to test the accuracy,
stability and applicability of the proposed SPH model for multiphase �ow
problems. Three categories of tests are investigated:

The �rst category of tests is dedicated to investigate the consistency and the
convergence of the non-conservative formulation for the surface tension force
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proposed in this work, for the case of two and three phase �ows with presence
of triple junction points. This is done through the comparison with available
analytical solutions. The examples addressed in this category are the square
droplet deformation [2] ,the spreading lens between two strati�ed �uid layers
[40] [25], and the capillary-viscous wave test [14, 15, 16, 17, 2] .

The second category of tests is devoted to demonstrate the ability of the
presented SPH model for the simulation of multiphase �ows under gravity
e�ects neglecting the surface tension. The examples addressed here are the
evolution of the two-phase strati�ed �uid layers and the Rayleigh-Taylor
instability (RTI). The �rst example is not only performed to examine the
stabilization e�ect of the damping technique but also to validate the proposed
modi�cations on generalized wall boundary conditions when the two �uid
phases meet the solid boundaries. The second example, is dawn to compare
the results of the presented SPH multiphase model with the ones using Level-
Set [18] and other SPH [41] models, and also with the analytical approach
presented in [42].

In the third category of tests we introduce high density and viscosity ratio
e�ects. The rising of an air bubble trough a water column and through
two strati�ed �uid layers are investigated. The results obtained with the
new method are compared to those obtained with other numerical methods
(Volume-Of-Fluid [43], Level-Set [44]) and also with experimental results [4].
Finally, we present the example of two rising bubbles through a water column
using a higher particle resolution than in the previous examples. In all the

numerical examples of this paper, the measurement of the physical properties
obtained at any desired point rm has been performed using a zeroth order
consistency SPH approximation (Shepard �lter [45])

p(rm) =

n∑

i

VipiW (rm − ri)

n∑

i

ViW (rm − ri)

(38)

Where n refers to the number of neighboring particles of the measuring point
rm.
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3.1. First category of tests: Validation of the formulation for the surface
tension

We present here the �rst category of numerical tests devoted to the vali-
dation of the formulation for the surface tension.

3.1.1. Square droplet deformation

In this �rst test case, the SPH method with CSS model of the surface tension
force is applied to the simulation of the deformation of a square droplet
under the action of the surface tension force. This example has already been
investigated by Adami et al [2] using a SPH method with CSF model. The
square droplet is de�ned by an edge length ld = 0.6 [m] units. It is placed
on the center of an square box with sides Ls = 1 [m]. The �uid within the
square droplet is referred as phase 1 whereas the �uid outside the droplet
is referred as phase 2 (see fgure 3). The densities of the each �uid phases
are chosen as ρ1 = ρ2 = 1 [Kg/m3] and the dynamic viscosity is taken as
µ1 = µ2 = 0.2 [Pa.s]. The surface tension coe�cient is σ1−2 = 1 [N/m].

fluid 1 fluid 2 

ls

ld

X

Y

Dimensions Initial state Equilibrium state

Figure 3: The evolution of square droplet under the surface tension e�ort : The left
�gure describes the geometrical details. The middle �gure shows the initial �uid particles
at (t = 0 [s]) for the particle resolution ls

40 . The right �gure describes droplet in equilibrium

state after its evolution for the particle resolution ls
40 .

We investigate the evolution of the square droplet deformation using three
di�erent number of particles: ls

40
, ls

80
and ls

160
. The smoothing length is chosen

equal to h = 1.33δx0. The reference speed of sound is set to (c0 = 10 [m/s])
for all resolutions. A positive background pressure is taken as (pb = 5 [Pa]).
A non-slip boundary condition is applied on all sides of the square box.

The evolution of the kinetic energy of the particles inside the droplet (Ek =
1
2

∑

id

mid‖vid‖2 where id refers to the droplet particles) is plotted in �gure
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4. The deformation of the square droplet starts at the corners because of a
local high surface tension due to the high curvature at corners. This e�ect is
re�ected by the peak in the kinetic energy which evolves until the stabilization
in a value close to zero for all resolutions.
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Figure 4: Time evolution of droplet kinetic energy for particle resolutions ls
40 ,

ls
80 and ls

160 .

At the stabilized state (equilibrium state) the particles are in rest, and
the square droplet is totally transformed in a circular droplet. Under the
�uid incompressibility hypothesis, both phases must conserve their volumes
(areas in 2D) during all the evolution process. Thus, the equality πR2 = l2d
holds for for the square droplet, and therefore the equilibrium radius is R =
ld√
π
≈ 0.338 [m]. From Laplace's law, the pressure of the �uid particles inside

the droplet (phase 1) must be higher than that of the surrounding particles
(phase 2), and the jump of pressure between the two phases must satisfy the
condition

∆p =
σ1−2

R
≈ 2.954 [Pa] (39)

The surface tension forces orientation and the magnitude of the veloc-
ity are shown in �gure 5. We observe that the surface tension force has a
radial direction, oriented towards the center of droplet. This orientation cor-
responds to the direction of normal vectors to the interface between the �uid
phases (see the left side of the �gure 5 ). On the right side of the �gure 5 the
magnitude velocity of every particle is represented. The velocity magnitude
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Figure 5: Surface tension forces orientation (on the left) and magnitude of the velocity
(on the right) of droplet at equilibrium state for the particle resolution ls

40 .

is in the order of O(10−3). When forces due to this spurious e�ect are com-
parable to other physical forces such as viscous, gravitational, and surface
tension forces, errors will be greater.

In �gure 6 we show the cut of pressure �eld at Y = 0 (X-axis) obtained
in the simulations and also the analytical pressure predicted by Laplace's
law. It is observed a good agreement between the numerical results and
the theoretical pressure. These results show that the SPH method with the
CSS non-conservative surface tension model is able to represent correctly the
equilibrium state of this two phase �ow problem.

When a low viscosity of µ1 = µ2 = 0.001[Pa.s] is used (small viscous
forces) to simulate the square droplet deformation test case, the pressure
pro�le at the equilibrium state is less accurate. This is because in this case
viscosity forces are comparable with the forces due to the parasitic currents
(see �gures 7 and 8). Note however that the circular shape of droplet is
well approximated. Parasitic currents are a numerical artifact su�ered for
numerical approaches of the surface tension based on the use of CSF or CSS
formulations. The elimination of this e�ect is not addressed here. For more
details about parasitic currents artifact and their elimination, please refer to
[46, 47, 48].

Three density ratios ρ2
ρ1

= {1, 10, 1000} are investigated in order to show
the in�uence of the variation of density ratios on the obtained pressure re-
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Figure 6: Square droplet test case.The left �gure plots the normalized pressure ( p−p2p1−p2 )
at the �nal stabilized state. The �gure on the right plots a cut of the pressure �eld at
Y = 0 obtained by the numerical method and the theoretical solution for di�erent particle
resolutions ls

160 ,
ls
80 and ls

40 .

Figure 7: Square droplet test case using low viscosity (µ1 = µ2 = 0.001[Pa.s]) for the
particle resolution of ls

80 . Particles colored with �uid phases (left). Magnitude velocity
�eld (right).

sults. In �gure 9, the pressure pro�les at Y = 0 are plotted for three selected
density ratios. Despite the obtained results of pressure are not as accurate as
for the case of density ratio ρ2

ρ1
= 1, we observe relatively a good agreement

with the analytical solution for the density ratios of ρ2
ρ1

= 10 and ρ2
ρ1

= 1000.

3.1.2. Spreading lens between two strati�ed layers

This example is aimed to test if the presented SPH model can deal with
triple junction points problems [25]. Thus, the classical test of the spreading
of a lens between two strati�ed �uid layers is investigated. A circular lens of
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Figure 8: A cut of the pressure �eld at Y = 0 obtained by the theoretical solution and
the numerical method and numerical method with viscosity µ1 = µ2 = 0.2[Pa.s] (dotted
line with small circles) and µ1 = µ2 = 0.001[Pa.s] (dotted line with small triangles) for
the particle resolution of ls

80 .
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Figure 9: A cut of the pressure �eld at Y = 0 obtained by the theoretical solution and
the numerical method and numerical method with viscosity µ1 = µ2 = 0.2[Pa.s] and three
density ratios ρ2

ρ1
= {1, 10, 1000} for the particle resolution of ls

80 .

radius 1
6

[m] is placed at the center of a square box with length sides (lb =
1 [m]). The square box contains two di�erent �uid phases in an strati�ed
arrangement. These �uid phases are respectively referred as �uid phases 1
(the phase at the top of the strati�cation) and 2 (the phase at the lower part
of the strati�cation arrangement) whereas the lens is referred as phase 3.
Due to the e�ect of the surface tension, the lens evolves until an equilibrium
state (see �gure 10). The contact angles at the triple junction point follows
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the Young's relation

sinθ1

σ2−3
=
sinθ2

σ1−3
=
sinθ3

σ1−2
(40)

fluid 1 

fluid 2 

fluid 3 θ2

θ3
R

32
θ1

�h

�d

X

Y

Figure 10: Schematical representation of contact angles at a triple junction point.

Fluid densities are set as (ρ1 = ρ2 = ρ3 = 1 [Kg/m3]) for the three �uid
phases. The dynamic viscosities are identical for the three �uid phases
(µ1 = µ2 = µ3 = 0.5 [Pas.s]). The interfacial surface tension applied on
all �uids interfaces is (σ1−2 = σ2−3 = σ1−3 = 5 [N/m]), in order to obtain
a symmetric lens. The analytic solution is obtained from Laplace's law and
Young's relation. The theoretical value of the pressure jump between phases
(∆p) is obtained in 2D case from equation (41). The shape of the half lens (
symmetric with respect to the X axis) at equilibrium state is assumed to be
a circular segment with following parameters (see �gure 10): The distance

between the two triple junction points (d̃), the contact angles of the ith phase
(θi), the sagitta (the distance from the center of the arc to the center of its

base) of the segment (h̃), the radius of the curvature of the interface between
the phases i and j (Rij) (in �gure 10, we represent the curvature between
the upper �uid of the strati�cation (1) and the �uid of the lens (3) ).

∆p = pi − pj =
σi−j

Rij

(41)
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At the equilibrium state the lens area A, the distance between triple junction
points d̃, and the contact angles θi can be expressed follows the relation [49]

d̃ =

(
1

8A

(
2(π − θ1)− sin((π − θ1))

sin2(π − θ1)
+

2(π − θ2)− sin((π − θ2))

sin2(π − θ2)

))− 1
2

≈ 0.4617 [m]

(42)
Note that in this test case, the surface tension coe�cients are taken identical.
Then, the Young's relation (equation (40)) reads as θ1 = θ2 = θ3 = 2π

3
.

Geometrical consideration leads to the following results

R31 = R32 =
d̃

2 sin θ3
2

≈ 0.2665 [m] (43)

h̃ = R32

(
1− cos

θ3

2

)
≈ 0.1333 [m] (44)

All the particles are initially at rest. The no-slip boundary condition is
applied on the upper and lower boundaries. On the left and right boundaries
a periodic boundary condition is applied. The reference speed of sound and
the background pressure are taken as ((c0 = 55 [m/s]) and pb = 150 [Pa]) ).

The time evolution of kinetic energy for three di�erent resolutions lb
40
, lb

80
and

lb
160

is plotted in the �gure 11. The kinetic energy converges to approximate
zero and reaches the equilibrium state. As it is observed, the magnitude
of the velocity decreases considerably (order of O(10−2); see �gure 12 ) at
later time for the three particle resolutions. This indicates that the parasitic
currents do not create a serious e�ect on the obtained results.

R2: Figure 12 shows the pressure �eld, the particle distribution of three
phases strati�cation arrangement and magnitude of velocity �led at the equi-
librium state. The initial circular shape of the lens evolved to an elliptical
shape at the equilibrium state. The pressure jump pro�le along X = 0 and
Y = 0 lines are plotted with the analytical solution obtained from equation
(41), which gives ∆p = p3 − p1 = p3 − p2 ≈ 18.7591 [Pa]. Quantitatively
a good agreement between the numerical solution and analytical one is ob-
served for both pressure pro�les (along the X = 0 and Y = 0 lines). A
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Figure 11: Spreading lens between two strati�ed layers: Time-evolution of kinetic energy
for three di�erent particle resolutions.

pressure instability is appeared near to the triple junctions points (follow-
ing the X axis) for both resolutions (see �gure 13). This instability tend to
disappear with increasing of resolution ( The instability in low resolution is
more marked than in higher one). Note that for a higher particle resolution,
the SPH numerical solution closes to the analytical one in terms of pressure
and geometrical details of lens which guarantees thereafter the convergence of
the proposed SPH interfacial multiphase model to deal with a triple junction
points problems.

Figure 12: Spreading lens between two strati�ed layers: pressure �eld (left), particle
distribution of three-phases strati�cation arrangement (middle) and magnitude velocity
�led (right).

The wettability of a �uid phase in contact with other two phases can
occur either partially or totally, depending on the surface tensions between
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Figure 13: Spreading lens between two strati�ed layers: pressure jump pro�le along
Y = 0 (left) and X = 0 (right) lines.

the three �uid interfaces. The degree of wettability can be determined by
the spreading parameter Sp [50]. If the spreading parameter is positive the
�uid of this phase will spread completely on the interface between the other
phases (total spreading). Here, in order to check if the proposed method
reproduces accurately this phenomenon, we consider two di�erent con�gura-
tions following the work presented in [40].

We de�ne the spreading parameter for the lens (Sp3) and the upper �uid
(Sp1) phases as follows

Sp3 = σ1−2 − (σ1−3 + σ2−3) (45)

Sp1 = σ2−3 − (σ1−2 + σ1−3) (46)

The �rst con�guration of the problem is de�ned by choosing the values of
interfacial surface tensions as {σ1−2, σ1−3, σ2−3} = {3, 1, 1} [N/m] (Sp3 =
1 [N/m] > 0). This choice leads to the total spreading of the lens phase 3 on
the interface phases 1-2

For the second con�guration, the values of interfacial surface tensions are
chosen as {σ1−2, σ1−3, σ2−3} = {1, 1, 3} [N/m] (Sp1 = 1 [N/m] > 0). This
choice leads to the total spreading of the upper �uid phase 1 on the interface
phases 2-3.

In Figure 14 we show the evolution of the spreading until the equilibrium
state is reached for the two con�gurations considered. In both cases, the
triple points disappear and the equilibrium interfaces are plane in the �rst
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case and sphericalsecond in the second simulation case. The results obtained
are in agreement with those obtained in [40].

(a)

(b)

Figure 14: Total spreading evolution of the �uid lens for the con�gurations : a){
σ1−2, σ1−3, σ2−3

}
= {3, 1, 1} [N/m] and b)

{
σ1−2, σ1−3, σ2−3

}
= {1, 1, 3} [N/m].

3.1.3. Capillary-viscous wave

In this example, the dynamic test case involving a liquid-droplet oscil-
lation in a liquid phase under the action of capillary forces is investigated.
This test was already simulated in the SPH framework in several works such
as [14, 15, 16, 17, 2]. The liquid-droplet (referenced with a d subscript)
has a radius of R = 0.1875[m] and is surrounded with another liquid phase
(referenced with a l subscript). Both �uids are placed at the center of a
square box of size Lx = Ly = 1[m]. The densities and dynamic viscosities
of the droplet and its surrounding �uid are considered the same and equal
to ρd = ρl = 1[Kg/m3], µd = µl = 0.05[Pa.s], respectively. The surface
tension coe�cient between the two phases is set as unity (σd−l = 1[N/m]).
A divergence-free initial velocity �eld is assigned to all �uid particles and it
reads as

vx = v0
x

r0

(
1− y2

r0r

)
e
− r
r0 (47)

vy = −v0
y

r0

(
1− x2

r0r

)
e
− r
r0 (48)
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Where r denotes the distance between the particle position (x, y) and the
droplet center. Terms v0 and r0 are the characteristic velocity and distance,
and are taken as v0 = 10[m/s] and r0 = 0.05[m]. We study the convergence
properties using three di�erent number of particles 900, 3600, 14400 particles.
The reference speed of sound is chosen equal to c0 = 10 [m/s] for both
�uid phases under all resolutions. A positive background pressure is set as
(pb = 5 [Pa]). A no-slip boundary condition is applied on the square box
sides.

Figure 15 shows droplet particles positions at t = {0.0, 0.08, 0.16, 0.26}[s],
under the resolution of 14400 particles ( about the same resolution used by
Morris et al [14] ). A good agreement is observed comparing with Morris
et al [14] and also with Adami et al results (their �gure 6 ). R1: As it is
shown in the �gure 16, the present SPH model provides more regular particle
distribution and more smooth interface comparing with the results obtained
by [14] with the consideration that initial distribution of the particles are
di�erent.

Figure 17 shows the time evolution of the center of mass position of
the upper right-quarter section of the droplet with di�erent resolutions. It
is observed that with increasing resolution the di�erence in results becomes
less signi�cant (the results with resolutions 3600 and 14400 particles are very
close comparing with the lowest resolution of 900 particles).

3.2. Second category of tests: Validation of the formulation for simulation of
multiphase �ows under gravity e�ects neglecting the surface tension

This set of tests are designed to check if the presented formulation can
simulate multiphase �ows under gravity e�ects. In these examples, the sur-
face tension force is neglected. Before addressing the Rayleigh�Taylor insta-
bility problem, we investigate �rst the ability of the current SPH model to
reach a hydrostatic pressure condition starting with zero initial pressures

3.2.1. Vertical �uid column: Hydrostatic pressure condition

In this test, we set three con�gurations of two strati�ed �uid layers which
have the same dimensions ([0, L]×[0, 2L] (see �gure 18) with di�erent density
ratio ρ2

ρ1
= 1, ρ2

ρ1
= 2 and ρ2

ρ1
= 4 [51]. Each test case is investigated using

three di�erent particle resolutions {24×49, 49×99, 99×199}. The subscripts
1 and 2 denote the upper and the lower �uids, respectively.

The half-length of the column is chosen as L = 1 [m], the interface between
two �uids is located at the middle of the column (at height equals to L). The
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Figure 15: Droplet oscillation : droplet particle positions at t = {0.0, 0.08, 0.16, 0.26}[s].

initial particle distribution is a regular lattice for each of the three resolutions
considered. The density of the lighter �uid is ρ1 = 1 [kg/m3] . The dynamic
viscosity is chosen constant as µ1 = µ2 = 0.1 [Pas.s] for all phases in all the
con�gurations. The vertical �uid column is assumed to be under the action
of an unit gravity (g = (0,−1) [m/s2]) . The reference speeds of sound are
chosen according to the condition discussed in Section 2.2, resulting in the
values of c01 = 10 [m/s] for all con�gurations and c02 = {20, 14.142, 10} [m/s]
for the con�gurations of ρ2

ρ1
= 1, ρ2

ρ1
= 2 and ρ2

ρ1
= 4, respectively. The back-

ground pressure is chosen as (pb = 0.05pr = 5 [Pa]). The no-slip boundary
condition is applied at all boundaries.

In order to show the e�ciency of the damping technique to reach quickly the
equilibrium state, the three con�gurations are tested with and without the
damping technique for the coarsest particle resolution 24× 49. The value of
the damping period is chosen as TD = 1 [s].
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Figure 16: R1: Comparison between the particles distribution of the oscillating droplet
at t = 0.08[s] and t = 0.26[s] under the resolution of 14400 particles. The left column
presents our results. The right column presents the resukts of Morris [14] .

Figure 19 shows the e�ect of the damping technique on the simulation results
for the pressure for the three con�gurations. We can see clearly that using the
damping technique leads to lower amplitude of the pressure oscillations and
to a faster convergence to the stabilized hydrostatic value. It is also observed
that for the highest density ratio, the pressure has an important amplitude of
oscillation.In this case, using the damping technique reduces the amplitude
of the oscillations, but they are still important. This is principally due to
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Figure 17: Convergence test of droplet oscillation: Center of mass position of the upper
right-quarter section of the droplet.
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Figure 18: Geometrical details of the initial con�guration of vertical �uid column: The
�gure on the left describes the setup of the problem for the hydrostatic pressure condition.
On the right, we show the initial state for the Rayleigh�Taylor instability test.

the change of the physical parameters of the lighter �uid after the damping
time. This change creates the jump in density, viscosity and mass and thus
the pressure. Despite that, it converges faster and presents less oscillations
than in the case of the simulation without using of the damping technique.
A remedy to further reduce the oscillations is to increase the damping time
(TD). In the case of unit density ratio the oscillations of the pressure are
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very limited and reachs the stabilized value of the hydrostatic pressure very
quickly.
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Figure 19: Time-evolution of pressure at the point (0.5, 0.5) (upper curves) and (0.5, 1.5)
(lower curves) with (Dotted line with small circle) and without (dotted line with small
square) the damping technique. The solid lines represent the stabilized pressure, and the
dashed line presents the background pressure.

After the stabilization of the pressure �eld using the damping technique, we
compare the obtained pressure pro�les using the present SPH model with the
analytical ones for di�erent density ratios and di�erent particle resolutions
(see �gure 20). The numerical results agree well with the analytical ones.

In �gure 21, we show the particle distribution and hydrostatic pressure at
equilibrium for the three particle resolutions for the ρ2

ρ1
= 4 case. Pressure

isolines are plotted in order to check the hydrostatic pressure levels obtained
with the tree di�erent resolutions. It is observed that the same pressure levels
are reached for all the particle resolutions. This indicates the convergence of
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the presented numerical model for the simulation of gravitational multiphase
�uid �ows. Note that the background pressure pb = 5 [Pa] is included in the
range of computed pressure variation.

From the results presented in �gures 20 and 21 we can also conclude
that the proposed modi�cations to the generalized wall boundary conditions
method [3] (see section 2.3) give good results. In order to perform an addi-
tional analysis of the e�ciency of this method, the same example was investi-
gated under high density and viscosity ratios. The density ratio was chosen to
be equal ρ2

ρ1
= 100, with ρ2 = 100[kg/m3] and ρ1 = 1[kg/m3]. While the vis-

cosity ratio is taken as µ2
µ1

= 10, with µ1 = 0.01[Pa.s] and µ2 = 0.1[Pa.s]. The

reference R1: speed of sound of the �uid phase 2 is set to c02 = 10[m/s] and
c01 = 100[m/s] for the phase 1 that give a reference pressure of pr = 104[Pa].
The background pressure is taken as pb = 0.05pr = 500[Pa]. The simulation
was performed using 49 × 99 particles, a damping period of TD = 1[s] and
no-slip condition is applied on all wall boundaries.

After the damping period (TD = 1[s]) the hydrostatic pressure �eld os-
cillates until it reaches the stabilized values at time t = 18[s] as it is shown
in the �gure 22. When the pressure �eld stabilizes, we perform a compari-
son between the numerical and analytical hydrostatic pressure pro�les taken
from the centerline of the vertical �uid column. The results are shown in
�gure 23. A very satisfactory agreement is observed between the pressure
results obtained with the present approach and analytical results. Figure 24
shows the vertical �uid column particles distribution at stabilized state. The
�uid particles are colored with phases (gray for the �uid 2 and black for the
�uid 1) in order to show that the interface between the two �uid phases that
meet the vertical wall boundaries is stable. As it is shown in the center of
the �gure 24, there are spurious currents which present a maximum velocity
magnitude of order O(10−3). A smooth hydrostatic pressure �eld is observed
via the right side of �gure 24.

3.2.2. Rayleigh�Taylor instability

The Rayleigh-Taylor instability (RTI) is a widely used benchmark [52, 32,
18, 41] to test the accuracy of numerical methods for multiphase gravity
�ows. The Rayleigh�Taylor instability, occurs at an interface between two
�uids of di�erent densities when the lighter �uid pushes the heavier �uid.
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This phenomenon occurs in a multitude of physical (salt domes, weather
inversions, etc) and industrial applications.

In this work a Rayleigh-Taylor with sinusoidal asymmetric interface perturba-
tion is studied. The computational domain is [0, L]× [0, 2L] with L = 1 [m].
The computational domain is divided in two sub-domains by a sinusoidal
interface y(x) = 1 − 0.15 sin (2πx) (see �gure 18). The lower sub-domain
is occupied by the lighter �uid (referred as phase 1) which has a density
ρ1 = 1 [kg/m3], while the upper sub-domain is occupied by the heavier �uid
(referred as phase 2) with density ρ2 = 1.8 [kg/m3]. The Reynolds number

is de�ned here as Re =

√
‖g‖L3

ν
, and a value of Re = 420 is chosen. In the

previous de�nition, ‖g‖ = 1[m/s2] is the modulus of the gravity acceleration
vector, and ν = ν1 = ν2 = 0.0024 [m2/s] is the kinematic viscosity which is
chosen to be equal and constant for both �uids phases.

The particles have an initial regular lattice distribution. The RTI test is
solved with three di�erent particles resolutions {49×99, 99×199, 133×267}
. The reference speeds of sound are taken as {c01, c02} = {13.41, 10} [m/s],
for the lighter and heavier �uids, respectively. The reference pressure is
chosen equal to 9 [Pa]. The no-slip boundary condition is applied on all
solid boundaries.

In �gure 25 we compare three di�erent particle resolutions at three di�erent
times t = 1 [s], t = 3 [s], t = 5 [s] . Quantitatively, it's shown that the three
particle resolutions are able to simulate substantially the same phenomena
of RTI. Nevertheless, at the low resolution 49 × 99 the roll-up of the small
structures at the mushroom-shaped head are not well reproduced. For the
�ner resolutions, all the small structure phenomena due to the development
and roll-up of the mushroom-shaped heads are captured. The two �ner res-
olutions (99× 199 and 150× 300 ) are very similar to each other in terms of
the shape of the instability.

We also performed a comparison between the RTI interfaces reproduced with
the proposed SPH model and two di�erent numerical methods. In �gure 26,
we compare the results at time t = 5 [s] with the resolution of 150 × 300
particles with those of a Level-set method [18] and another SPH model [41].
There are some di�erences between the SPH method [41] and the method
presented here. For instance in [41] a Wendland kernel function [53] and
time-integration of continuity equation for the density are used instead of the
quintic spline kernel 7 and summation-based density 8 used in the presented
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SPH method, respectively. The present SPH model can reproduce the RTI
interface in good agreement with the other numerical models which have more
resolution (Level-Set: a grid of 312× 624 cells, and SPH model[41]:150× 300
particles). Globally, the RTI interface reproduced with the proposed SPH
approach is closer to that reproduced with the SPH model of [41]. This is
probably due to the same nature of both models. We note, however that in
some places the interface with the proposed SPH method is closer to that
obtained by the Level-set one [18]. These results are only of a qualitative
nature. Monaghan et al [41] prefer to examine the convergence by comparing
the time evolution of the position of the Y−coordinate of the highest particle
of the lighter �uid (phase 1) with that obtained from the Layzer's theory
[42, 54]. Thus, the highest point of the phase 1 �uid for the three particle
resolutions {49 × 99, 99 × 199, 150 × 300} is plotted in �gure 27 together
with the curve obtained using the Layzer's theory. The results are in good
agreement with the Layzer theory. Note that the the Layzer theory is for
a periodic domain, while the results are obtained from the simulation in a
rectangular rigid domain with no-slip boundaries. This fact may explain
some of the deviations of the numerical results from the theoretical line.

3.3. Third category of tests: high density and viscosity ratio e�ects

The simulations of the bubble rising behaviour can be characterized by the
Reynolds and the Eötvös dimensionless numbers [43] and also the density and
viscosity ratio (ρ1

ρ2
, µ1
µ2

). The Reynolds number Re gives the ratio of inertial
to viscous e�ects and is expressed as

Re =
ρ1vcLc
µ1

. (49)

While the Eötvös number Eo compares buoyancy e�ects to capillary ones :

Eo =
ρ1v

2
cLc
σ

. (50)

In this section, the subscripts 1 and 2 refer to the heavier and lighter �uid,
respectively. The characteristic velocity is de�ned as vc =

√
2R‖g‖ and

Lc = 2R refers to the characteristic length. R is initial radius of the bubble
and ‖g‖ is the magnitude of the gravity acceleration vector.
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3.3.1. Single bubble rising through a vertical column of water

The purpose of this test is to show the e�ciency of the present SPH model to
simulate a two phase interfacial �uid �ow with low and high density ratios.
These tests are taken from the work of Hysing et al [43]. A single bubble
rising in a vertical column due to gravity e�ect. The initial bubble position
and dimensions of the vertical column are described related to the bubble
radius R R1: (see �gure 28). The physical variables and parameters are
summarized at Table 1 as Case 1.

This test is done with two di�erent particle resolutions 66×133 and 133×267.
The damping technique is applied here with TD = 1. The reference speeds
of sound for the two phases are set to {c01 , c02} = {5.7, 18} [m/s]. No-slip
boundary conditions are applied on the upper and lower solid boundaries,
while free-slip boundary conditions are applied on the left and right bound-
aries.

The position of the gravity center GCy of the bubble and its vertical velocity
vGC are computed as follows

GCy =

∑
iNbyi
Nb

. (51)

vGC =

∑
iNbvyi
Nb

. (52)

Nb denotes the number of particles in the bubble, and yi is the Y coor-
dinate of the particle i which belongs to the particle set of the bubble. The
term vyi denotes the vertical component of the velocity of the particle i.

In �gure 29 we compare our results for the time evolution of the vertical
position of the gravity center of the rising bubble and its vertical velocity with
the ones obtained in [43] using the VOF method. Basically, a good agreement
is found between our SPH numerical results and those of reference [43], even
tough a slight di�erence for the position of the gravity center is detected, and
some oscillations are observed around the VOF velocity curve. However, the
overall SPH results are in good agreement with the reference ones.

In �gure 30, we also compare the shape and position of the bubble inter-
faces at time t = 3 [s]. We observe a perfect agreement in this case.

Figure 31 shows the pressure and the magnitude velocity of the water
column for two di�erent particle resolutions at two di�erent times t = 1 [s]
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and t = 2 [s]. Moreover, in �gure 32 we show the direction of the velocity
vector of the particles inside the bubble for the previous two resolutions at
time t = 1 [s]. The results obtained for both particle resolutions are very
similar, indicating the convergence of the numerical model.

Now we address the same case with a higher density ratio [44, 28, 18]. In
this case, during the rising motion, the bubble undergoes a large deformation
that subsequently splits it into three parts. The initial setup is presented in
�gure 18 and the physical variables and parameters for this test case are
summarized at Table 1 as the Case 2.

In this test we use a discretization of 240 × 400 particles. The reference
speeds of sound are {c01 , c02} = {7, 221.35} [m/s]. The damping technique is
used here with (TD = 0.05 [s]). The boundary conditions are the same than
for Case 1 of this section.

Figure 33 shows the velocity and relative pressure (∆̃p = p − pmin) of the
column of water at the dimensionless time t

√
‖g‖/R = 3.6. The bubble

is strongly deformed and it is split in three parts during its evolution. The
evolution of the bubble is presented in �gure34 during nine di�erent instants.
The particles inside the bubble are colored with the magnitude of the velocity.
In �gure 35 we compare the results obtained with the SPH method with those
obtained using a Level-Set method [44]. The results of the SPH and Level-
Set methods are in good agreement. During the rising process, the bubble
deforms and takes a horseshoe shape. After that, the extremities roll-up until
they undergo a big deformation which subsequently splits the bubble to form
other small ones. The main di�erence between the results is that near to the
symmetric axis the bubble obtained using the present SPH method is thicker
than the one obtained by the level-Set method. The results for the width of
the bubble remains in very good agreement during all the simulation period
for both methods. We observe that in the Level-set solution the bubble
splits in several very small bubbles that are not predicted by the present
SPH method. Thereafter, these smaller bubbles disappear gradually from
the Level-Set simulation.

Case ρ1 [kg/m3] ρ2 [kg/m3] µ1 [Pa.s] µ2 [Pa.s] σ [N/m] ‖g‖ [m/s2] Re Eo
ρ1
ρ2

µ1
µ2

1 1000 100 10 1 24.5 0.98 35 10 10 10
2 1000 1 0.035 0.0045 0.1226 9.81 1000 285.63 1000 7.77

Table 1: Setup for Case 1 and Case 2 tests.
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3.3.2. Gas bubble rising through two strati�ed �uid layers

This test example describes the behavior of a rising gas bubble through
two strati�ed �uid layers (see �gure 36 ). The gas bubble can cross the
interface between layers with or without entrainment of the heavier �uid
into the lighter, or it could even remain trapped in it. Greene et al [55, 56]
suggest a criterion on the bubble volume to predict this behavior based on
a macroscopic balance between surface tension forces and buoyancy forces.
Thus, if the bubble volume is greater than a critical volume Vc (Vb > Vc), the
bubble will penetrate the interface layer and it will eventually entrain into
the heavier �uid, otherwise the bubble will be trapped between the interface
layers. The critical volume is calculated as follows

Vc =

(
2π( 3

4π
)1/3σ2−3

(ρ3 − ρ1)‖g‖

) 3
2

(53)

In equation (53) the subscript(or superscript for surface tension) 1 correspond
to the lower �uid, 2 refers to the bubble, and 3 refers to the upper �uid.

This problem is very challenging from the numerical point of view since
it involves high denisites and viscosities ratios and the presence of triple
point junctions. The setup of the problem presented here is taken from
[4]. The density and dynamic viscosity of �uid 1 (95% glycerin + water)
are ρ1 = 1244 [kg/m3] , µ1 = 550.1 × 10−3 [Pa.s], in the case of the buble
(�uid 2) the chosen values are those of the air: ρ2 = 1.205 [kg/m3] and
µ2 = 5 × 10−3 [Pa.s].Note that the value of air bubble viscosity is chosen
greater than the real one and equal µ2 = 5 × 10−3 [Pa.s] instead the use
of the real gas viscosity with an arti�cial one to guarantee the stability of
the algorithm [35] . Finally, for the �uid 3 (47V500 oil), the values are
ρ3 = 965. and µ3 = 530.7 × 10−3 [Pa.s] . The surface tensions are σ1−2 =
45.1613 × 10−3 [N/m], σ1−3 = 21 × 10−3 [N/m], σ2−3 = 28 × 10−3 [N/m] ,
and the speeds of sound are taken as {c01, c02, c03} = {3.7, 118.88, 4.2} [m/s].
The radius of the air bubble is R = 3.5 × 10−3 [m]. These data correspond
to a Reynolds number Re ≈ 4.15 and Eötvös number Eo ≈ 13.24. For the
simulation, a regular lattice with 50 × 166 particles is employed. No-slip
boundary conditions are applied on the top and bottom boundaries, and
periodic boundary conditions are applied on the left and right edges of the
domain. The dimensions of computational domain are detailed in �gure36.
The damping technique is used with TD = 0.05 [s].
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The critical volume is computed using equation (53) which gives Vc ≈ 3.92×
10−8 [m3]. This implies a critical radius of Rc ≈ 0.021 [m]. In this example,
the initial radius of air bubble R = 0.0035 [m] is greater than the critical
one which logically involves that the Vc < VBubble. With this values, the air
bubble penetrates the interface �uid layers [4].
In �gure 37 we show the numerical results for the relative hydrostatic pressure
�eld ∆̃p = p− pmin, the magnitude of the velocity �eld and the distribution
of the three di�erent phases in di�erent instants. The dimensionless interval
between two images is taken equal to ∆t

√
‖g‖/R = 4.3 [4]. In �gure 38

we compare the numerical results with the experimental images obtained
in [4]. The numerical results are in good agreement with the experimental
ones. The di�erences between the numerical and experimental sequences are
maybe due to uncertainties in the initial conditions of the experimental test
and possibly to any 3D e�ect.

3.3.3. Interaction of two rising bubbles through a �uid column

In this last test case we solve a case based on the one presented in [57].
Two bubbles are initially set close to each other and rise through a �uid
column. The upper bubble is larger than the lower one The smaller bubble
has a radius R = 0.1 [m]. The geometrical setup of the problem is based on
the radius of the smaller bubble and is detailed in �gure 39. The physical
parameters for the setup of this problem are given in Table2 , respectively.

ρ1 [kg/m3] ρ2 [kg/m3] µ1 [Pa.s] µ2 [Pa.s] σ [N/m] ‖g‖ [m/s2] Re Eo
ρ1
ρ2

µ1
µ2

1000 100 0.156 0.078 0 2.9 1794 ∞ 10 2

Table 2: Setup for the interaction of two rising bubbles through a �uid column test case.

We use here a discretization of 500× 750 particles.
The reference speeds of sound {c01, c02} = {9.32, 29, 47} [m/s] are chosen
for �uid water column and the �uid of the two bubbles, respectively. The
simulation is damped for a period of TD = 0.25 [s]. Left and right boundaries
are set as free-Slip boundaries, whereas no-slip boundary conditions are set at
top and bottom boundaries. The results for pressure variation ∆̃p = p−pmin
, velocity magnitude of the �uid column and of the bubble are presented in
�gures 40 and 41.

During the evolution process of the two rising bubbles, the upper bubble
covers the lower one. This generates more e�orts over the lower bubble. Due
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to this forces, the lower bubble deforms. This deformation generates two
�uid ejections that go thinner as the rising process continues. Finally, the
two bubbles merge but this state is not stable and they split in two parts.

4. Conclusion

In this work, a consistent smoothed particle hydrodynamics model is pro-
posed. This model includes a surface tension formulation which ensures the
tangential R1: properties of the tensor surface stress and the stability of the
numerical method. The numerical stability is obtained through the use of
a divergence operator with �rst order consistency and also with a damping
technique that avoids the numerical issues due to the jump initial condi-
tions. In this work it is also presented a modi�cation of the generalized wall
boundary conditions to be able to simulate multiphase �uid �ows.

The accuracy, stability and applicability of the proposed SPH model to
deal with interfacial multiphase problems were shown. The proposed SPH
scheme is able to obtain very accurate results when dealing with problems
including high density and viscosity ratios and triple junction points.
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5. Appendix A

In this Appendix we show the relation between CSS and CSF formula-
tions. The Continuum Surface Stress (CSS) formulation reads

FST = ∇.Π (54)

Replacing the stress tensor Π by its formulation in the equation (54) we get:
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FST = ∇.


σ ‖∇C‖I︸ ︷︷ ︸

(I)

−σ

(II)︷ ︸︸ ︷
∇C
‖∇C‖ ⊗ ∇C


 (55)

The divergence of the �rst part (I) of the equation (55) can be modi�ed as

∇. (‖∇C‖I) = ∇ (‖∇C‖) =

( ∇C
‖∇C‖ .∇

)
∇C. (56)

Whereas the divergence of the second part (II) can be written as

∇.
( ∇C
‖∇C‖ ⊗ ∇C

)
= ∇.

( ∇C
‖∇C‖

)
∇C +

( ∇C
‖∇C‖ .∇

)
∇C. (57)

By subtracting the equation (57) from equation (56), we obtain the Stress
Surface Force formulation (CSF) (58):

FST = −σ∇.
( ∇C
‖∇C‖

)
∇C = σκ∇C. (58)

Where κ describes the interface curvature which is expressed as κ = −∇.n =

−∇.
(
∇C
‖∇C‖

)
, with .n is the unit normal vector to the interface.

6. Appendix B

In this appendix, we show that the stress surface tension is tangential to
the �uid interface. We can write the surface tension as a volumetric force as
follows:

FST = ∇ ·Π (59)

Where Π =
(
σ‖∇C‖I− σ ∇C

‖∇C‖ ⊗∇C
)
is the stress surface tensor.

This formulation allows the interpretation of the tension force as a internal
body forces of the continuum medium (as viscous tensor). So, we will inves-
tigate if these e�orts are carried by the tangent direction to the interface.
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For this reason we will applied the stress tensor Π on an arbitrary vector f
see �gure 42 :

Π · f = σ‖∇C‖ (f − (f .n) n) (60)

Π · f = σ‖∇C‖ ΞT · f (61)

Where ΞT is the projection operator on the tangent plane to the interface.
Equation (61) indicates that the internal forces associated to the surface
stress tensor are tangent to the interface.

7. Appendix C

In this appendix, we summarize the proposed SPH model via a pseudo-
code.
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Figure 20: Hydrostatic pressure variation ∆p = p − pmin for the three di�erent density
ratios ρ2

ρ1
. Below, we plot a zoom of the selected zones (a) (b) (c) (d).
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Figure 21: The �uid column particles colored with normalized hydrostatic pressure for the
density ratio ρ2

ρ1
= 4 with the three particle resolutions 24 × 49 (left), 49 × 99 (center),

99× 199 (right). It is also shown the pressure isolines in the range 3.5 to 8 [Pa].
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Figure 22: Time-evolution of pressure at the point (0.5, 0.5) (upper curves) and (0.5, 1.5)
(lower curves) after the damping period for the for the density and viscosity ratios of
ρ2
ρ1

= 100 and µ2

µ1
= 10 . The solid lines represent the stabilized pressure, and the dashed

line presents the background pressure.
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Figure 23: Hydrostatic pressure variation ∆p = p − pmin for the density and viscosity
ratios of ρ2ρ1 = 100 and µ2

µ1
= 10. On the right we plot a zoom of the selected zone.

Figure 24: The �uid column particles for the density and viscosity ratios of ρ2ρ1 = 100 and
µ2

µ1
= 10. The left �gure represents the �uid particles colored with phase color (gray color

for �uid 2, black color for �uid 1). The �gure of the center show the velocity magnitude
holds on every �uid particle. The right �gure represents the �uid and wall particles colored
with hydrostatic pressure �led.
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Figure 25: Rayleigh�Taylor instability at three di�erent times t = 1 [s] (left column),
t = 3 [s] (center column), t = 5 [s] (right column) after the damping period, and three
di�erent resolutions: 49 × 99 particles (top), 99 × 199 particles (middle) and 150 × 300
particles (bottom).
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Figure 26: Comparison between the �uid interfaces of the present work and the references.
The left �gure compares the �uid interface of present SPH model with that of SPH model
developed by Monaghan et al [41].The right �gure compares the �uid interface of the
present SPH method with that of Level-Set method [18].
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of the initial setup. On the left it is schematically described the low-density ratio con-
�guration (Case 1)[43] (R = 0.25 [m]) and on the right it is described the setup for the
high-density ratio con�guration (Case 2) [44](R = 0.025 [m]).
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t = 1 [s] t = 3 [s]

Figure 31: Single bubble rising through a vertical column of water. Case 1: Pressure (top)
and velocity (bottom) �elds at times t = 1 [s] and t = 3 [s] for two di�erent particle
resolutions, 66× 133 (left) and 133× 267(right).
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Figure 32: Single bubble rising through a vertical column of water. Case 1: Direction
of the velocity vector of the particles inside the bubble at t = 1 colored with magnitude
velocity. On the left, results for 66× 133 particles, and on the right we plot the results for
the 133× 267 particles case.

Figure 33: Single bubble rising through a vertical column of water. Case 2: Relative
pressure (∆̃p = p − pmin) and magnitude of the velocity of the column of water at the
dimensionless time t

√
‖g‖/R = 3.6
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Figure 34: Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine di�erent instants. The Bubble is colored with velocity magnitude �eld.
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Figure 35: Single bubble rising through a vertical column of water. Case 2: Evolution
of the bubble at nine di�erent instants. Results obtained with the present SPH method
(blue circles) and with a Level-Set approach [44] (black diamonds).
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Figure 36: Gas bubble rising through two strati�ed �uid layers. Geometrical details of the
problem setup.
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Figure 37: Gas bubble rising through two strati�ed �uid layers. Starting from the
left, �rst and second columns show the relative hydrostatic pressure �eld ∆̃p = p − pmin
for di�erent normalized times t+ = t

√
‖g‖/R. Third and fourth columns present the

magnitude of the velocity �eld. The last two columns show the �uid phases distribution.

60



Figure 38: Gas bubble rising through two strati�ed �uid layers. On the top, we show the
experimental sequence taken from [4]. On the bottom we plot the results obtained using
the proposed SPH method. The dimensionless interval between two images is taken equal
to ∆t
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Figure 39: Interaction of two rising bubbles through a �uid column: Geometrical setup.
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Figure 40: Interaction of two rising bubbles through a �uid column First and second
images columns represent the pressure and magnitude velocity, respectively. The third
column presents the magnitude velocity with particle direction vector of isolated bubble.
The simulations are presented in order at the times t = {0, 0.25, 0.5} [s].
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Figure 41: Two rising bubbles through a �uid column. First and second images columns
represent the pressure and magnitude velocity, respectively. The third column presents
the magnitude velocity with particle direction vector of isolated bubble. The simulations
are presented in order at the times t = {0.75, 1} [s].

interface 

t
n

f Π
· f

Figure 42: Application of stress surface tensor Π on an arbitrary vector f . Where n and
t are the normal and tangential vectors on the interface, respectively.
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/* Initialization */

The physical proprieties of the heavier phase must be assigned to all �uid phases;

The initial particles velocity and pressure are set to zero;

Set c0, pb,δt, TD,Tend;
while δt ∗ it < Tend do

Search for each particle i ∈ Ω = Ωf ∪ Ωs its particles neighbor j. /* linked list method

is employed in this work. Ωf and Ωs denote the fluid and solid particles,

respectively. */

/* Damping process */

if δt ∗ it < TD then

Compute ξD using Eq.37 ;

end

if it = dTD
δt
e then

Assign the real physical proprieties to each �uid phase;

end

for i ∈ Ωs do

Compute pw and vw using Eqs.25 and 23, respectively;

end

/* Prediction Step */

for i ∈ Ωf do

Compute ∇pi,Fi
V is and Fi

ST using Eqs.26, 28 and 22, respectively;

ṽn+1
i = vi

n + δt
(

1
ρi

(−∇pi + Fi
V is + Fi

ST )n + ξDg
)
;

r̃n+1
i = ri

n + δt vni ;

end

for i ∈ Ω do

/* In this loop, the predicted particle velocities and positions are used

for the calculation of Πi,pw and vw. */

if i ∈ Ωf and δt ∗ it ≥ TD then

Compute Πi using Eq.18;

end

if i ∈ Ωs then

Compute pw, vw using Eqs 25 and 23, respectively;

end

end

/* Correction Step */

for i ∈ Ωf do

/* In this loop, the predicted particle velocities and positions are used

for the calculation of ∇pi,Fi
V is and Fi

ST . */

Compute ∇pi,Fi
V is and Fi

ST using Eqs.26, 28 and 22, respectively;

vi
n+1 = 1

2

{
vi
n + ṽn+1

i

}
+ δt

2

(
1
ρi

(−∇pi + Fi
V is + Fi

ST )n + ξDg
)
;

ri
n+1 = ri

n + δt vn+1
i ;

end

for i ∈ Ωf do

/* In this loop, the predicted particle positions are used for the

calculation of ρi and thus pi. */

Compute ρi and pi using Eqs.8 and 2, respectively;

if δt ∗ it ≥ TD then

Compute Πi using Eq.18;

end

end

it = it + 1;
n = n+ 1;

end

Algorithm 1: Pseudo-code of SPH interfacial model.
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