10 research outputs found

    We are more selfish than we think:The endowment effect and reward processing within the human medial-frontal cortex

    Get PDF
    Perceived ownership has been shown to impact a variety of cognitive processes: attention, memory, and—more recently—reward processing. In the present experiment we examined whether or not perceived ownership would interact with the construct of value—the relative worth of an object. Participants completed a simple gambling game in which they gambled either for themselves or for another while electroencephalographic data were recorded. In a key manipulation, gambles for oneself or for another were for either small or large rewards. We tested the hypothesis that value affects the neural response to self-gamble outcomes, but not other-gamble outcomes. Our experimental data revealed that while participants learned the correct response option for both self and other gambles, the reward positivity evoked by wins was impacted by value only when gambling for oneself. Importantly, our findings provide additional evidence for a self-ownership bias in cognitive processing and further demonstrate the insensitivity of the medial-frontal reward system to gambles for another. </jats:p

    Selfish learning:the impact of self-referential encoding on children's literacy attainment

    Get PDF
    Self-referencing (i.e., thinking about oneself during encoding) can increase attention toward to-be-encoded material, and support memory for information in adults and children. The current inquiry tested an educational application of this 'self reference effect' (SRE) on memory. A selfreferential modification of literacy tasks (vocabulary spelling) was tested in two experiments. In Experiment 1, seven- to nine-year-old children (N = 47) were asked to learn the spelling of four nonsense words by copying the vocabulary and generating sentences. Half of the children were asked to include themselves as a subject in each sentence. Results showed that children in this self-referent condition produced longer sentences and increased spelling accuracy by more than 20%, relative to those in an other-referent condition. Experiment 2 (N = 32) replicated this pattern in real-word learning. These findings demonstrate the significant potential advantages of utilizing self-referential encoding in the classroom

    Reward prediction error signals associated with a modified time estimation task

    No full text
    The feedback error-related negativity (fERN) is a component of the human event-related brain potential (ERP) elicited by feedback stimuli. A recent theory holds that the fERN indexes a reward prediction error signal associated with the adaptive modi. cation of behavior. Here we present behavioral and ERP data recorded from participants engaged in a modified time estimation task. As predicted by the theory, our results indicate that fERN amplitude reflects a reward prediction error signal and that the size of this error signal is correlated across participants with changes in task performance

    When theory and biology differ : the relationship between reward prediction errors and expectancy

    No full text
    Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event- related brain potential associated with feedback processing, scaled inversely with expectancy (e. g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning

    Exercising is good for the brain but exercising outside is potentially better

    No full text
    Abstract It is well known that exercise increases cognitive function. However, the environment in which the exercise is performed may be just as important as the exercise itself. Time spent in natural outdoor environments has been found to lead to increases in cognition similar to those resulting from acute exercise. Therefore, the benefits of both exercise and nature exposure suggest an additive impact on brain function when both factors are combined. This raises the question: what is the interaction between acute exercise and environment on cognition? We answered this question using electroencephalography to probe cognitive function using the oddball task before and after brief indoor and outdoor walks on 30 participants (average 21 years old, 95% CI [20, 22]). Our results demonstrate improved performance and an increase in the amplitude of the P300, an event-related neural response commonly associated with attention and working memory, following a 15-min walk outside; a result not seen following a 15-min walk inside. Importantly, this finding indicates that the environment may play a more substantial role in increasing cognitive function such as attention than exercise, at least in terms of acute exercise (i.e., a brief walk). With the world’s growing urbanization and the associated increase in sedentary time indoors, a deeper understanding of how these factors interact and influence cognition may be critical to combat adverse health effects

    Thinking theta and alpha : mechanisms of intuitive and analytical reasoning

    No full text
    Humans have a unique ability to engage in different modes of thinking. Intuitive thinking (coined System 1, see Kahneman, 2011) is fast, automatic, and effortless whereas analytical thinking (coined System 2) is slow, contemplative, and effortful. We extend seminal pupillometry research examining these modes of thinking by using electroencephalography (EEG) to decipher their respective underlying neural mechanisms. We demonstrate that System 1 thinking is characterized by an increase in parietal alpha EEG power reflecting autonomic access to long-term memory and a release of attentional resources whereas System 2 thinking is characterized by an increase in frontal theta EEG power indicative of the engagement of cognitive control and working memory processes. Consider our results in terms of an example - a child may need cognitive control and working memory when contemplating a mathematics problem yet an adult can drive a car with little to no attention by drawing on easily accessed memories. Importantly, the unravelling of intuitive and analytical thinking mechanisms and their neural signatures will provide insight as to how different modes of thinking drive our everyday lives

    A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study

    No full text
    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise
    corecore