98 research outputs found

    Dynamical scaling and isotope effect in temporal evolution of mesoscopic structure during hydration of cement

    Full text link
    The evolution of mesoscopic structure for cement-water mixtures turning into colloidal gels remains far from being understood. Recent neutron scattering investigations (Phys. Rev. Lett. 93, 255704 (2004); Phys. Rev. B. 72, 224208 (2005); Phys. Rev. B. 82, 064203 (2010)),, reveal the role of hydrogen bond in temporal evolution of the mesoscopic structure during hydration of cement which is the most consumed synthetic material. The present neutron scattering investigation on hydration of cement with a mixture of light and heavy water points to incomprehensibility of the temporal evolution of the mesoscopic structure in terms of earlier observations on hydration with pure light or heavy water. Unlike in the case of hydration with light water, disagreement has been observed with the hypothesis of dynamical scaling for hydration of cement with a mixture of the two types of water. The dynamics of evolution of the mesoscopic structure has been observed to be nonlinear in regard to the composition of hydration medium.Comment: 16 Pages, 5 Figure

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures

    Low Density Lipoproteins as Circulating Fast Temperature Sensors

    Get PDF
    Background: The potential physiological significance of the nanophase transition of neutral lipids in the core of low density lipoprotein (LDL) particles is dependent on whether the rate is fast enough to integrate small (62uC) temperature changes in the blood circulation. Methodology/Principal Findings: Using sub-second, time-resolved small-angle X-ray scattering technology with synchrotron radiation, we have monitored the dynamics of structural changes within LDL, which were triggered by temperature-jumps and-drops, respectively. Our findings reveal that the melting transition is complete within less than 10 milliseconds. The freezing transition proceeds slowly with a half-time of approximately two seconds. Thus, the time period over which LDL particles reside in cooler regions of the body readily facilitates structural reorientation of the apolar core lipids. Conclusions/Significance: Low density lipoproteins, the biological nanoparticles responsible for the transport of cholesterol in blood, are shown to act as intrinsic nano-thermometers, which can follow the periodic temperature changes during blood circulation. Our results demonstrate that the lipid core in LDL changes from a liquid crystalline to an oily state within fractions of seconds. This may, through the coupling to the protein structure of LDL, have important repercussions o

    Thermal inactivation and conformational lock studies on glucose oxidase

    Get PDF
    In this study, the dissociative thermal inactivation and conformational lock theories are applied for the homodimeric enzyme glucose oxidase (GOD) in order to analyze its structure. For this purpose, the rate of activity reduction of glucose oxidase is studied at various temperatures using b-D-glucose as the substrate by incubation of enzyme at various temperatures in the wide range between 40 and 70 �C using UV–Vis spectrophotometry. It was observed that in the two ranges of temperatures, the enzyme has two different forms. In relatively low temperatures, the enzyme is in its dimeric state and has normal activity. In high temperatures, the activity almost disappears and it aggregates. The above achievements are confirmed by dynamic light scattering. The experimental parameter ‘‘n’’ as the obvious number of conformational locks at the dimer interface of glucose oxidase is obtained by kinetic data, and the value is near to two. To confirm the above results, the X-ray crystallography structure of the enzyme, GOD (pdb, 1gal), was also studied. The secondary and tertiary structures of the enzyme to track the thermal inactivation were studied by circular dichroism and fluorescence spectroscopy, respectively. We proposed a mechanism model for thermal inactivation of GOD based on the absence of the monomeric form of the enzyme by circular dichroism and fluorescence spectroscopy

    Treatment of Branch Retinal Vein Occlusion induced Macular Edema with Bevacizumab

    Get PDF
    BACKGROUND: Branch retinal vein occlusion is a frequent cause of visual loss with currently insufficient treatment options. We evaluate the effect of Bevacizumab (Avastin) treatment in patients with macular edema induced by branch retinal vein occlusion. METHODS: Retrospective analysis of 32 eyes in 32 patients with fluorescein angiography proven branch retinal vein occlusion, macular edema and Bevacizumab treatment. Outcome measures were best corrected visual acuity in logMAR and central retinal thickness in OCT. RESULTS: Visual acuity was significantly better 4 to 6 weeks after Bevacizumab treatment compared to visual acuity prior to treatment (before 0.7 +/- 0.3 and after 0.5 +/- 0.3; mean +/- standard deviation; p < 0.01, paired t-test). Gain in visual acuity was accompanied by a significant decrease in retinal thickness (454 +/- 117 to 305 +/- 129 microm, p < 0.01, paired t-test). Follow up (170, 27 - 418 days; median, range) shows that improvement for both visual acuity and retinal thickness last for several months after Bevacizumab use. CONCLUSION: We present evidence that intravitreal Bevacizumab is an effective and lasting treatment for macular edema after branch retinal vein occlusion

    Calcium Triggered Lα-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS

    Get PDF
    BACKGROUND: Awad et al. reported on the Ca(2+)-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca(2+) solutions. METHODOLOGY/PRINCIPAL FINDINGS: Under static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of approximately 140 A (L(alpha)-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca(2+) ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca(2+) ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca(2+)>2), Ca(2+) ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H(2)). Our results reveal that a binding ratio of 1 Ca(2+) per 8 DOPG is sufficient for the formation of the H(2) phase. At 50 degrees C a direct transition from the vesicles to the H(2) phase was observed, whereas at ambient temperature (20 degrees C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H(2) phase was detected. CONCLUSIONS/SIGNIFICANCE: The strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles

    Poverty Consumption: Consumer Behavior of Refugees in Industrialized Countries

    No full text
    To date, consumer research has devoted no attention to the consumer behavior of refugees in industrialized countries. This article summarizes research investigating the experiences of young refugees in a western country and the coping strategies they develop in consumer behavior in order to deal with the new situation of living in an affluent society. Another part of the study focuses on “sacred” possessions and on the question of whether they have a significant meaning for the adolescent refugees and for what reasons. The research was conducted in a shelter for adolescent refugees and was based chiefly on ethnographic fieldwork, collage techniques and long interviews, especially making use of male informants from Africa and Asia

    Poverty Consumption: Consumer Behavior of Refugees in Industrialized Countries

    No full text
    To date, consumer research has devoted no attention to the consumer behavior of refugees in industrialized countries. This article summarizes research investigating the experiences of young refugees in a western country and the coping strategies they develop in consumer behavior in order to deal with the new situation of living in an affluent society. Another part of the study focuses on “sacred” possessions and on the question of whether they have a significant meaning for the adolescent refugees and for what reasons. The research was conducted in a shelter for adolescent refugees and was based chiefly on ethnographic fieldwork, collage techniques and long interviews, especially making use of male informants from Africa and Asia

    Ein Verfahren zur Optimierung der Faserverlaeufe in Verbundwerkstoffen durch Minimierung der Schubspannungen nach Vorbildern der Natur

    No full text
    A method to optimize fiber arrangement in composite materials is developed and introduced. Herein fibers are arranged parallel to the principal stress trajectories of the loaded structure. Natural fiber orientations of tensile, compression and bending loaded biological structures are determined. It is shown that their fiber orientation is optimized for their loading situation. Engineering fiber structures are optimized with regard to minimized shear stresses between the fibers and in case of a plate with a hole are loaded in tensile testing. The tensile strength is increased by fiber orientation parallel to the stress trajectories in comparison to unidirectionary fiber orientation. By additional optimization of the distribution of the elastic modulus in composite structures an improvement in stress distribution is achieved. (orig.)SIGLEAvailable from TIB Hannover: ZA 5141(5406) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore