108 research outputs found

    Automated Synthesis of 3‘-Metalated Oligonucleotides

    Get PDF
    We report the first synthesis of a metallonucleoside bound to a solid support and subsequent oligonucleotide synthesis with this precursor. Large-scale syntheses of metal-containing oligonucleotides are achieved using a solid support modified with [Ru(bpy)_2(impy‘)]^(2+) (bpy is 2,2‘-bipyridine; impy‘ is 2‘-iminomethylpyridyl-2‘-deoxyuridine). A duplex formed with the metal-containing oligonucleotide exhibits superior thermal stability when compared to the corresponding unmetalated duplex (Tm = 50 °C vs T_m = 48 °C). Electrochemical (E_(1/2) = 1.3 V vs NHE), absorption (λ_(max) = 480 nm), and emission (λ_(max) = 720 nm, τ = 44 ns, Φ = 0.11 × 10^(-3)) data for the ruthenium-modified oligonucleotides indicate that the presence of the oligonucleotide does not perturb the electronic properties of the ruthenium complex. The absence of any change in the emission properties upon duplex formation suggests that the [Ru(bpy)_2(impy)]^(2+) chromophore will be a valuable probe for DNA-mediated electron-transfer studies. Despite the relatively high Ru(III/II) reduction potential, oxidative quenching of photoexcited [Ru(bpy)_2(impy)]^(2+) does not lead to oxidative damage of guanine or other DNA bases

    Inelastic interaction mean free path of negative pions in tungsten

    Get PDF
    The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm

    Rationales for the Lightning Flight-Commit Criteria

    Get PDF
    Since natural and artificially-initiated (or "triggered") lightning are demonstrated hazards to the launch of space vehicles, the American space program has responded by establishing a set of Lightning Flight Commit Criteria (LFCC), also known as Lightning Launch Commit Criteria (LLCC), and associated Definitions to mitigate the risk. The LLCC apply to all Federal Government ranges and similar LFCC have been adopted by the Federal Aviation Administration for application at state-operated and private spaceports. The LLCC and Definitions have been developed, reviewed, and approved over the years of the American space program, progressing from relatively simple rules in the mid-twentieth century (that were inadequate) to a complex suite for launch operations in the early 21st century. During this evolutionary process, a "Lightning Advisory Panel (LAP)" of top American scientists in the field of atmospheric electricity was established to guide it. Details of this process are provided in a companion document entitled "A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America s Space program" which is available as NASA Special Publication 2010-216283. As new knowledge and additional operational experience have been gained, the LFCC/LLCC have been updated to preserve or increase their safety and to increase launch availability. All launches of both manned and unmanned vehicles at all Federal Government ranges now use the same rules. This simplifies their application and minimizes the cost of the weather infrastructure to support them. Vehicle operators and Range safety personnel have requested that the LAP provide a detailed written rationale for each of the LFCC so that they may better understand and appreciate the scientific and operational justifications for them. This document provides the requested rationale

    A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America's Space Program

    Get PDF
    The history of the Lightning Launch Commit Criteria (LLCC) used at all spaceports under the jurisdiction of the United States is provided. The formation and history of the Lightning Advisory Panel (LAP) that now advises NASA, the Air Force and the Federal Aviation Administration on LLCC development and improvement is emphasized. The period covered extends from the early days of space flight through 2010. Extensive appendices provide significant detail about important aspects that are only summarized in the main text

    The design, construction and performance of the MICE scintillating fibre trackers

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

    The A‐dependenc of ψ production in π− nucleus collisions at 530 GeV/c

    Full text link
    The E672/E706 Spectrometer, located in the MW beam at Fermilab, was used to collect data on events containing a pair of muons in the final state with large effective mass. The momentum of incident pions and protons was 530 GeV/c. Nuclear targets included Be, C, Al, Cu and Pb. We report on a preliminary measurement of the A‐dependence of the per nucleus cross section for forward J/ψ production. The apparatus also detected charged particles and γ’s produced in association with the muon pair. The expected physics results on the hadroproduction of χ states and beauty particles are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87663/2/624_1.pd

    Hadroproduction of χc states in 530 GeV/c π− interactions with nuclear targets

    Full text link
    We are studying production of χc states in 530 GeV/c π− interactions with several targets. χc mesons are observed in the mode (χ→J/ψ+γ). Only photons that converted to e+e− pairs are used in the reconstruction of the χc mesons. Preliminary analysis shows that the fraction of observed J/ψs coming from χc radiative decays is 0.44±0.09±0.08, and that the relative production rate of χc1 to χc2 is 1.3±0.6.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87707/2/1062_1.pd
    corecore