36 research outputs found

    Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets

    Get PDF
    AbstractHsp27 and αB-crystallin are molecular chaperones that are constitutively expressed in several mammalian cells, particularly in pathological conditions. These proteins share functions as diverse as protection against toxicity mediated by aberrantly folded proteins or oxidative-inflammation conditions. In addition, these proteins share anti-apoptotic properties and are tumorigenic when expressed in cancer cells. This review summarizes the current knowledge about Hsp27 and αB-crystallin and the implications, either positive or deleterious, of these proteins in pathologies such as neurodegenerative diseases, myopathies, asthma, cataracts and cancers. Approaches towards therapeutic strategies aimed at modulating the expression and/or the activities of Hsp27 and αB-crystallin are presented

    Knock Down of Heat Shock Protein 27 (HspB1) Induces Degradation of Several Putative Client Proteins

    Get PDF
    Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions

    Human Papillomavirus Type 18 E6 Protein Binds the Cellular PDZ Protein TIP-2/GIPC, Which Is Involved in Transforming Growth Factor β Signaling and Triggers Its Degradation by the Proteasome

    No full text
    Several viral proteins expressed by DNA or RNA transforming viruses have the particular property of binding via their C-terminal end to various cellular proteins with PDZ domains. This study is focused on the PDZ protein TIP-2/GIPC, which was originally identified in two-hybrid screens performed with two different baits: the human T-cell leukemia virus type 1 Tax oncoprotein and the regulator of G signaling RGS-GAIP. Further studies have shown that TIP-2/GIPC is also able to associate with the cytoplasmic domains of various transmembrane proteins. In this report we show that TIP-2/GIPC interacts with the E6 protein of human papillomavirus type 18 (HPV-18). This event triggers polyubiquitination and proteasome-mediated degradation of the cellular protein. In agreement with this observation, silencing of E6 by RNA interference in HeLa cells causes an increase in the intracellular TIP-2/GIPC level. This PDZ protein has been previously found to be involved in transforming growth factor β (TGF-β) signaling by favoring expression of the TGF-β type III receptor at the cell membrane. In line with this activity of TIP-2/GIPC, we observed that depletion of this protein in HeLa cells hampers induction of the Id3 gene by TGF-β treatment and also diminishes the antiproliferative effect of this cytokine. Conversely, silencing of E6 increases the expression of Id3 and blocks proliferation of HeLa cells. These results support the notion that HPV-18 E6 renders cells less sensitive to the cytostatic effect of TGF-β by lowering the intracellular amount of TIP-2/GIPC

    Hsp27 as a negative regulator of cytochrome C release.

    No full text
    We previously showed that Hsp27 protects against apoptosis through its interaction with cytosolic cytochrome c. We have revisited this protective activity in murine cell lines expressing different levels of Hsp27. We report that Hsp27 also interferes, in a manner dependent on level of expression, with the release of cytochrome c from mitochondria. Moreover, a decreased level of endogenous Hsp27, which sensitized HeLa cells to apoptosis, reduced the delay required for cytochrome c release and procaspase 3 activation. The molecular mechanism regulating this function of Hsp27 is unknown. In our cell systems, Hsp27 is mainly cytosolic and only a small fraction of this protein colocalized with mitochondria. Moreover, we show that only a very small fraction of cytochrome c interacts with Hsp27, hence excluding a role of this interaction in the retention of cytochrome c in mitochondria. We also report that Bid intracellular relocalization was altered by changes in Hsp27 level of expression, suggesting that Hsp27 interferes with apoptotic signals upstream of mitochondria. We therefore investigated if the ability of Hsp27 to act as an expression-dependent modulator of F-actin microfilaments integrity was linked to the retention of cytochrome c in mitochondria. We show here that the F-actin depolymerizing agent cytochalasin D rapidly induced the release of cytochrome c from mitochondria and caspase activation. This phenomenon was delayed in cells pretreated with the F-actin stabilizer phalloidin and in cells expressing a high level of Hsp27. This suggests the existence of an apoptotic signaling pathway linking cytoskeleton damages to mitochondria. This pathway, which induces Bid intracellular redistribution, is negatively regulated by the ability of Hsp27 to protect F-actin network integrity. However, this upstream pathway is probably not the only one to be regulated by Hsp27 since, in staurosporine-treated cells, phalloidin only partially inhibited cytochrome c release and caspase activation. Moreover, in etoposide-treated cells, Hsp27 still delayed the release of cytochrome c from mitochondria and Bid intracellular redistribution in conditions where F-actin was not altered

    Hsp27 as a Negative Regulator of Cytochrome c Release

    No full text
    We previously showed that Hsp27 protects against apoptosis through its interaction with cytosolic cytochrome c. We have revisited this protective activity in murine cell lines expressing different levels of Hsp27. We report that Hsp27 also interferes, in a manner dependent on level of expression, with the release of cytochrome c from mitochondria. Moreover, a decreased level of endogenous Hsp27, which sensitized HeLa cells to apoptosis, reduced the delay required for cytochrome c release and procaspase 3 activation. The molecular mechanism regulating this function of Hsp27 is unknown. In our cell systems, Hsp27 is mainly cytosolic and only a small fraction of this protein colocalized with mitochondria. Moreover, we show that only a very small fraction of cytochrome c interacts with Hsp27, hence excluding a role of this interaction in the retention of cytochrome c in mitochondria. We also report that Bid intracellular relocalization was altered by changes in Hsp27 level of expression, suggesting that Hsp27 interferes with apoptotic signals upstream of mitochondria. We therefore investigated if the ability of Hsp27 to act as an expression-dependent modulator of F-actin microfilaments integrity was linked to the retention of cytochrome c in mitochondria. We show here that the F-actin depolymerizing agent cytochalasin D rapidly induced the release of cytochrome c from mitochondria and caspase activation. This phenomenon was delayed in cells pretreated with the F-actin stabilizer phalloidin and in cells expressing a high level of Hsp27. This suggests the existence of an apoptotic signaling pathway linking cytoskeleton damages to mitochondria. This pathway, which induces Bid intracellular redistribution, is negatively regulated by the ability of Hsp27 to protect F-actin network integrity. However, this upstream pathway is probably not the only one to be regulated by Hsp27 since, in staurosporine-treated cells, phalloidin only partially inhibited cytochrome c release and caspase activation. Moreover, in etoposide-treated cells, Hsp27 still delayed the release of cytochrome c from mitochondria and Bid intracellular redistribution in conditions where F-actin was not altered

    NF-ÎşB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex.

    No full text
    We previously found that the NF-ÎşB transcription factor is activated during the recovery period after heat shock; moreover, we demonstrated that NF-ÎşB is essential for cell survival after heat shock by activating autophagy, a mechanism that probably helps the cell to cope with hyperthermic stress through clearance of damaged proteins. In this study, we analyze the involvement of NF-ÎşB in basal and heat-stress-induced protein quality control, by comparing the level of multiubiquitylated and/or aggregated proteins, and proteasome and autophagic activity in NF-ÎşB-competent and NF-ÎşB-incompetent cells. We show that NF-ÎşB has only a minor role in basal protein quality control, where it modulates autophagosome maturation. By contrast, NF-ÎşB is shown to be a key player in protein quality control after hyperthermia. Indeed, NF-ÎşB-incompetent cells show highly increased levels of multiubiquitylated and/or aggregated proteins and aggresome clearance defects; a phenotype that disappears when NF-ÎşB activity is restored to normal. We demonstrate that during heat shock recovery NF-ÎşB activates selective removal of misfolded or aggregated proteins--a process also called 'aggrephagy'--by controlling the expression of BAG3 and HSPB8 and by modulating the level of the BAG3-HspB8 complex. Thus NF-ÎşB-mediated increase in the level of the BAG3-HspB8 complex leads to upregulation of aggrephagy and clearance of irreversibly damaged proteins and might increase cell survival in conditions of hyperthermia

    Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients

    No full text
    The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease. In this study, we investigated whether modulations of protein quality control mechanisms already pre-exist in undifferentiated myoblasts originating from DMD patients. We report for the first time that the absence of dystrophin in human myoblasts is associated with protein aggregation stress characterized by an increase of protein aggregates. This stress is combined with BAG1 to BAG3 switch, NFÎşB activation and up-regulation of BAG3/HSPB8 complexes that ensure preferential routing of misfolded/aggregated proteins to autophagy rather than to deficient 26S proteasome. In this context, restoration of pre-existing alterations of protein quality control processes might represent an alternative strategy for DMD therapies

    Distinct Contributions of Autophagy Receptors in Measles Virus Replication

    No full text
    International audienceAutophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO_2 and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection
    corecore