673 research outputs found
Probing large-scale wind structures in Vela X-1 using off-states with INTEGRAL
Vela X-1 is the prototype of the class of wind-fed accreting pulsars in high
mass X-ray binaries hosting a supergiant donor. We have analyzed in a
systematic way ten years of INTEGRAL data of Vela X-1 (22-50 keV) and we found
that when outside the X-ray eclipse, the source undergoes several luminosity
drops where the hard X-rays luminosity goes below 3x10^35 erg/s, becoming
undetected by INTEGRAL. These drops in the X-ray flux are usually referred to
as "off-states" in the literature. We have investigated the distribution of
these off-states along the Vela X-1 ~8.9 d orbit, finding that their orbital
occurrence displays an asymmetric distribution, with a higher probability to
observe an off-state near the pre-eclipse than during the post-eclipse. This
asymmetry can be explained by scattering of hard X-rays in a region of ionized
wind, able to reduce the source hard X-ray brightness preferentially near
eclipse ingress. We associate this ionized large-scale wind structure with the
photoionization wake produced by the interaction of the supergiant wind with
the X-ray emission from the neutron star. We emphasize that this observational
result could be obtained thanks to the accumulation of a decade of INTEGRAL
data, with observations covering the whole orbit several times, allowing us to
detect an asymmetric pattern in the orbital distribution of off-states in Vela
X-1.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society (5 pages, 3 figures). A few typos fixed to match the published
versio
Intense XUV pulses from a compact HHG setup using a single harmonic
We report on a compact and spectrally intense extreme-ultraviolet (XUV) source, which is based on high-harmonic generation (HHG) driven by 395 nm pulses. In order to minimize the XUV virtual source size and to maximize the XUV flux, HHG is performed several Rayleigh lengths away from the driving laser focal plane in a high-density gas jet. As a result, a high focused XUV intensity of 5 × 1013 W cm−2 is achieved, using a beamline with a length of only two meters and a modest driving laser pulse energy of 3 mJ. The high XUV intensity is demonstrated by performing a nonlinear ionization experiment in argon, using an XUV spectrum that is dominated by a single harmonic at 22 eV. Ion charge states up to Ar3+ are observed, which requires the absorption of at least four XUV photons. The high XUV intensity and the narrow bandwidth are ideally suited for a variety of applications including photoelectron spectroscopy, the coherent control of resonant transitions and the imaging of nanoscale structures
Variability in high-mass X-ray binaries
Strongly magnetized, accreting neutron stars show periodic and aperiodic
variability over a wide range of time scales. By obtaining spectral and timing
information on these different time scales, we can have a closer look into the
physics of accretion close to the neutron star and the properties of the
accreted material. One of the most prominent time scales is the strong
pulsation, i.e., the rotation period of the neutron star itself. Over one
rotation, our view of the accretion column and the X-ray producing region
changes significantly. This allows us to sample different physical conditions
within the column but at the same time requires that we have
viewing-angle-resolved models to properly describe them. In wind-fed high-mass
X-ray binaries, the main source of aperiodic variability is the clumpy stellar
wind, which leads to changes in the accretion rate (i.e., luminosity) as well
as absorption column. This variability allows us to study the behavior of the
accretion column as a function of luminosity, as well as to investigate the
structure and physical properties of the wind, which we can compare to winds in
isolated stars.Comment: 6 pages, 4 figures, accepted for publication in Astronomische
Nachrichten (proceedings of the XMM-Newton Workshop 2019
Epidemics and percolation in small-world networks
We study some simple models of disease transmission on small-world networks,
in which either the probability of infection by a disease or the probability of
its transmission is varied, or both. The resulting models display epidemic
behavior when the infection or transmission probability rises above the
threshold for site or bond percolation on the network, and we give exact
solutions for the position of this threshold in a variety of cases. We confirm
our analytic results by numerical simulation.Comment: 6 pages, including 3 postscript figure
Coupling hydrodynamics with comoving frame radiative transfer: II. Stellar wind stratification in the high-mass X-ray binary Vela X-1
CONTEXT: Vela X-1, a prototypical high mass X-ray binary (HMXB), hosts a
neutron star (NS) in a close orbit around an early-B supergiant donor star.
Accretion of the donor star's wind onto the NS powers its strong X-ray
luminosity. To understand the physics of HMXBs, detailed knowledge about the
donor star winds is required. AIMS: To gain a realistic picture of the donor
star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model
describing the wind stratification while properly reproducing the observed
donor spectrum. To investigate how X-ray illumination affects the stellar wind,
we calculated additional models for different X-ray luminosity regimes.
METHODS: We use the recently updated version of the PoWR code to consistently
solve the hydrodynamic equation together with the statistical equations and the
radiative transfer. RESULTS: The wind flow in Vela X-1 is driven by ions from
various elements with Fe III and S III leading in the outer wind. The
model-predicted mass-loss rate is in line with earlier empirical studies. The
mass-loss rate is almost unaffected by the presence of the accreting NS in the
wind. The terminal wind velocity is confirmed at km/s.
On the other hand, the wind velocity in the inner region where the NS is
located is only km/s, which is not expected on the basis of a
standard -velocity law. In models with an enhanced level of X-rays, the
velocity field in the outer wind can be altered. If the X-ray flux is too high,
the acceleration breaks down because the ionization increases. CONCLUSIONS:
Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model
reveals a low wind speed at the NS location, and it provides quantitative
information on wind driving in this important HMXB.Comment: 19 pages, 10 figures, accepted for publication in Astronomy &
Astrophysic
A large spin-up rate measured with INTEGRAL in the High Mass X-ray Binary Pulsar SAXJ2103.5+4545
The High Mass X-ray Binary Pulsar SAXJ2103.5+4545 has been observed with
INTEGRAL several times during the last outburst in 2002-2004. We report a
comprehensive study of all INTEGRAL observations, allowing a study of the pulse
period evolution during the recent outburst. We measured a very rapid spin-up
episode, lasting 130days, which decreased the pulse period by 1.8s. The spin-up
rate, pdot=-1.5e-7 s/s, is the largest ever measured for SAXJ2103.5+4545, and
it is among the fastest for an accreting pulsar. The pulse profile shows
evidence for temporal variability, apparently not related to the source flux or
to the orbital phase. The X-ray spectrum is hard and there is significant
emission up to 150keV. A new derivation of the orbital period, based on RXTE
data, is also reported.Comment: 8 pages, 7 figures, accepted for publication in A&
- …