82 research outputs found

    Clusters of Glycemic Response to Oral Glucose Tolerance Tests Explain Multivariate Metabolic and Anthropometric Outcomes of Bariatric Surgery in Obese Patients

    Get PDF
    Glycemic responses to bariatric surgery are highly heterogeneous among patients and defining response types remains challenging. Recently developed data-driven clustering methods have uncovered subtle pathophysiologically informative patterns among patients without diabetes. This study aimed to explain responses among patients with and without diabetes to bariatric surgery with clusters of glucose concentration during oral glucose tolerance tests (OGTTs). We assessed 30 parameters at baseline and at four subsequent follow-up visits over one year on 154 participants in the Bialystok Bariatric Surgery Study. We applied latent trajectory classification to OGTTs and multinomial regression and generalized linear mixed models to explain differential responses among clusters. OGTT trajectories created four clusters representing increasing dysglycemias that were discordant from standard diabetes diagnosis criteria. The baseline OGTT cluster increased the predictive power of regression models by over 31% and aided in correctly predicting more than 83% of diabetes remissions. Principal component analysis showed that the glucose homeostasis response primarily occurred as improved insulin sensitivity concomitant with improved the OGTT cluster. In sum, OGTT clustering explained multiple, correlated responses to metabolic surgery. The OGTT is an intuitive and easy-to-implement index of improvement that stratifies patients into response types, a vital first step in personalizing diabetic care in obese subjects

    Reduced expression of innate immunity-related genes in lymph node metastases of luminal breast cancer patients

    Get PDF
    Immune system plays a dual role in cancer by either targeting or supporting neoplastic cells at various stages of disease, including metastasis. Yet, the exact immune-related transcriptome profiles of primary tumours (PT) and lymph node metastases (LNM) and their evolution during luminal breast cancer (BCa) dissemination remain undiscovered. In order to identify the immune-related transcriptome changes that accompany lymphatic spread, we analysed PT-LNM pairs of luminal BCa using NanoString technology. Decrease in complement C3ā€”one of the top-downregulated genes, in LNM was validated at the protein level using immunohistochemistry. Thirty-three of 360 analysed genes were downregulated (9%), whereas only 3 (0.8%) upregulated in LNM when compared to the corresponding PT. In LNM, reduced expression was observed in genes related to innate immunity, particularly to the complement system (C1QB, C1S, C1R, C4B, CFB, C3, SERPING1 and C3AR1). In validation cohort, complement C3 protein was less frequently expressed in LNM than in PT and it was associated with worse prognosis. To conclude, local expression of the complement system components declines during lymphatic spread of non-metastatic luminal BCa, whilst further reduction of tumoral complement C3 in LNM is indicative for poor survival. This points to context-dependent role of complement C3 in BCa dissemination.publishedVersio

    The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes.

    Get PDF
    Type 1 diabetes mellitus (T1DM) is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs) represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group) were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha), activatory molecules (OX40, 4-1BB) and elements of cytotoxicity (granzyme B, perforin 1) were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted

    Serum metabolomics identified specific lipid compounds which may serve as markers of disease progression in patients with Alstrƶm and Bardet-Biedl syndromes

    Get PDF
    Objectives: Alstrƶm syndrome (ALMS) and Bardet-Biedl syndrome (BBS) are among the so-called ciliopathies and are associated with the development of multiple systemic abnormalities, including early childhood obesity and progressive neurodegeneration. Given the progressive deterioration of patientsā€™ quality of life, in the absence of defined causal treatment, it seems reasonable to identify the metabolic background of these diseases and search for their progression markers. The aim of this study was to find metabolites characteristic to ALMS and BBS, correlating with clinical course parameters, and related to the diseases progression.Methods: Untargeted metabolomics of serum samples obtained from ALMS and BBS patients (study group; n = 21) and obese/healthy participants (control group; each of 35 participants; n = 70) was performed using LC-QTOF-MS method at the study onset and after 4Ā years of follow-up.Results: Significant differences in such metabolites as valine, acylcarnitines, sphingomyelins, phosphatidylethanolamines, phosphatidylcholines, as well as lysophosphatidylethanolamines and lysophosphatidylcholines were observed when the study group was compared to both control groups. After a follow-up of the study group, mainly changes in the levels of lysophospholipids and phospholipids (including oxidized phospholipids) were noted. In addition, in case of ALMS/BBS patients, correlations were observed between selected phospholipids and glucose metabolism parameters. We also found correlations of several LPEs with patientsā€™ age (p < 0.05), but the level of only one of them (hexacosanoic acid) correlated negatively with age in the ALMS/BBS group, but positively in the other groups.Conclusion: Patients with ALMS/BBS have altered lipid metabolism compared to controls or obese subjects. As the disease progresses, they show elevated levels of lipid oxidation products, which may suggest increased oxidative stress. Selected lipid metabolites may be considered as potential markers of progression of ALMS and BBS syndromes

    The short-term and long-term effects of intranasal mesenchymal stem cell administration to noninflamed mice lung

    Full text link
    Mesenchymal stem cells (mesenchymal stromal cells; MSC)-based therapies remain a promising approach to treat degenerative and inflammatory diseases. Their beneficial effects were confirmed in numerous experimental models and clinical trials. However, safety issues concerning MSCsā€™ stability and their long-term effects limit their implementation in clinical practice, including treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19. Here, we aimed to investigate the safety of intranasal application of human adipose tissue-derived MSCs in a preclinical experimental mice model and elucidate their effects on the lungs. We assessed short-term (two days) and long-term (nine days) effects of MSCs administration on lung morphology, immune responses, epithelial barrier function, and transcriptomic profiles. We observed an increased frequency of IFNĪ³-Ā producing T cells and a decrease in occludin and claudin 3 as a long-term effect of MSCs administration. We also found changes in the lung transcriptomic profiles, reflecting redox imbalance and hypoxia signaling pathway. Additionally, we found dysregulation in genes clustered in pattern recognition receptors, macrophage activation, oxidative stress, and phagocytosis. Our results suggest that i.n. MSCs administration to noninflamed healthy lungs induces, in the late stages, low-grade inflammatory responses aiming at the clearance of MSCs graft

    Circulating serum miR-362-3p and miR-6721-5p as potential biomarkers for classification patients with adult-type diffuse glioma

    Get PDF
    According to the fifth edition of the WHO Classification of Tumours of the Central Nervous System (CNS) published in 2021, grade 4 gliomas classification includes IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately, despite precision oncology development, the prognosis for patients with grade 4 glioma remains poor, indicating an urgent need for better diagnostic and therapeutic strategies. Circulating miRNAs besides being important regulators of cancer development could serve as promising diagnostic biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA miR-362-3p and miR-6721-5p screening signature for serum for non-invasive classification of identified glioma cases into the highest-grade 4 and lower-grade gliomas. A total of 102 samples were included in this study, comprising 78 grade 4 glioma cases and 24 grade 2ā€“3 glioma subjects. Using the NanoString platform, seven miRNAs were identified as differentially expressed (DE), which was subsequently confirmed via RT-qPCR analysis. Next, numerous combinations of DE miRNAs were employed to develop classification models. The dual panel of miR-362-3p and miR-6721-5p displayed the highest diagnostic value to differentiate grade 4 patients and lower grade cases with an AUC of 0.867. Additionally, this signature also had a high AUC = 0.854 in the verification cohorts by RT-qPCR and an AUC = 0.842 using external data from the GEO public database. The functional annotation analyses of predicted DE miRNA target genes showed their primary involvement in the STAT3 and HIF-1 signalling pathways and the signalling pathway of pluripotency of stem cells and glioblastoma-related pathways. For additional exploration of miRNA expression patterns correlated with glioma, we performed the Weighted Gene-Co Expression Network Analysis (WGCNA). We showed that the modules most associated with glioma grade contained as many as six DE miRNAs. In conclusion, this study presents the first evidence of serum miRNA expression profiling in adult-type diffuse glioma using a classification based on the WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-6721-5p signatures have the potential to be utilised for grading gliomas in clinical applications

    Macrophage deletion of Noc4l triggers endosomal TLR4/TRIF signal and leads to insulin resistance

    Get PDF
    In obesity, macrophages drive a low-grade systemic inflammation (LSI) and insulin resistance (IR). The ribosome biosynthesis protein NOC4 (NOC4) mediates 40 S ribosomal subunits synthesis in yeast. Hereby, we reported an unexpected location and function of NOC4L, which was preferentially expressed in human and mouse macrophages. NOC4L was decreased in both obese human and mice. The macrophage-specific deletion of Noc4l in mice displayed IR and LSI. Conversely, Noc4l overexpression by lentivirus treatment and transgenic mouse model improved glucose metabolism in mice. Importantly, we found that Noc4l can interact with TLR4 to inhibit its endocytosis and block the TRIF pathway, thereafter ameliorated LSI and IR in mice.Macrophage inflammation promotes insulin resistance during diet-induced obesity. Here the authors show that macrophage NOC4L is decreased in humans and mice with obesity, that macrophage NOC4L deficiency aggravated high-fat diet induced inflammation and insulin resistance, and that NOC4L interacts with toll-like receptor 4, to inhibit endocytosis, and thus blocks TLF4/TRIF inflammatory signaling
    • ā€¦
    corecore