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According to the fifth edition of theWHOClassification of Tumours of the Central
Nervous System (CNS) published in 2021, grade 4 gliomas classification includes
IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately,
despite precision oncology development, the prognosis for patients with
grade 4 glioma remains poor, indicating an urgent need for better diagnostic
and therapeutic strategies. Circulating miRNAs besides being important
regulators of cancer development could serve as promising diagnostic
biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA
miR-362-3p and miR-6721-5p screening signature for serum for non-invasive
classification of identified glioma cases into the highest-grade 4 and lower-grade
gliomas. A total of 102 samples were included in this study, comprising 78 grade
4 glioma cases and 24 grade 2–3 glioma subjects. Using the NanoString platform,
seven miRNAs were identified as differentially expressed (DE), which was
subsequently confirmed via RT-qPCR analysis. Next, numerous combinations
of DEmiRNAs were employed to develop classificationmodels. The dual panel of
miR-362-3p and miR-6721-5p displayed the highest diagnostic value to
differentiate grade 4 patients and lower grade cases with an AUC of 0.867.
Additionally, this signature also had a high AUC = 0.854 in the verification cohorts
by RT-qPCR and an AUC = 0.842 using external data from the GEO public
database. The functional annotation analyses of predicted DE miRNA target
genes showed their primary involvement in the STAT3 and HIF-1 signalling
pathways and the signalling pathway of pluripotency of stem cells and
glioblastoma-related pathways. For additional exploration of miRNA
expression patterns correlated with glioma, we performed the Weighted
Gene-Co Expression Network Analysis (WGCNA). We showed that the
modules most associated with glioma grade contained as many as six DE
miRNAs. In conclusion, this study presents the first evidence of serum miRNA
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expression profiling in adult-type diffuse glioma using a classification based on the
WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-
6721-5p signatures have the potential to be utilised for grading gliomas in clinical
applications.
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1 Introduction

Adult-type diffuse gliomas are the most prevalent tumours,
accounting for approximately 80% of all central nervous system
malignant tumours (Siegel et al., 2023). They are the leading cause of
significant morbidity and mortality due to high invasiveness,
accelerated growth, dismal localisation, and heterogeneity (Louis
et al., 2021). Regarding the latest WHO Classification of Central
Nervous System (WHO CNS5) adult-type diffuse gliomas, three
dominant types can be distinguished: i) oligodendroglioma, with
isocitrate dehydrogenase IDH mutations and 1p/19q codeletion; ii)
astrocytoma with IDH mutations; iii) and glioblastoma with wild-
type IDH (Louis et al., 2021; Osborn et al., 2022). IDH-mutated
astrocytoma and wild-type IDH glioblastoma (GBM are now
classified as grade 4 cancer. This type of tumour is particularly
invasive, destructive and aggressive (McNamara et al., 2022; Yang
et al., 2022). Currently, diagnosis of grade 4 gliomas remains limited
and is based on neurological testing and neuroimaging (Silantyev
et al., 2019). The ultimate glioma grade determination solely relies
on a histological examination utilising previous tumour resection.
Moreover, biopsies are used, but they can be misleading because of
the heterogeneity of the tumour (Weller et al., 2015). Thus, there is
an urgent need to identify non-invasive biomarkers that would help
to classify patients with different grades of glioma and recognise
individuals with the predisposition to its development.

MicroRNAs (miRNAs) are small, non-coding, endogenous
single-stranded RNAs with about 17–25 nucleotides in length
(Huang, 2017). The formation of miRNA is a complex process
that involves multiple steps, beginning in the cell nucleus and ending
in the cytoplasm. Genes encoding miRNAs are transcribed by
polymerase II into pri-miRNA. The pri-miRNA is processed into
pre-miRNA with the involvement of Drosha ribonuclease. The pre-
miRNA is then transported from the nucleus to the cytoplasm of the
cell. Dicer endonuclease cleaves the pre-miRNA into short miRNA
duplexes, which are later unfolded by an unknown helicase. The
mature miRNA strand binds to the Ago protein to form a complex
(O’Brien et al., 2018; Shang et al., 2023). These molecules play a vital
role in regulating post-transcriptional regulation of gene expression
by interacting with the 3′ untranslated region (3′UTR) of their target
messenger RNA (mRNA). The degree of complementarity between
the miRNA sequence and its target mRNA determines the
regulatory effect of miRNA. High nucleotide complementarity
usually leads to transcript degradation, while partial
complementarity inhibits translation (Bhowmick et al., 2018). A
single miRNA can target and regulate many genes (Doench and
Sharp, 2004). Interestingly, one miRNA molecule can regulate
hundreds of genes, but one gene can also be regulated by dozens
of miRNAs. Bioinformatics analyses predict that nearly two-thirds
of human genes can be regulated by the action of miRNAs (Quillet

et al., 2020). MiRNAs are involved in various cellular processes such
as development, proliferation, apoptosis, metabolism,
differentiation, metastasis, angiogenesis, and tumourigenesis
(Tiwari et al., 2017; Vishnoi and Rani, 2017; Bautista-Sánchez
et al., 2020).

In recent years, research has emphasised the crucial role miRNA
may play as a biomarker for many diseases. Changes in miRNA
expression have been linked to the development of many civilization
diseases such as cancer, cardiovascular disease, and metabolic
disorders. MiRNA expression profiling is believed to be a useful
diagnostic tool for early disease detection, disease severity
assessment, treatment response monitoring, and personalized
therapeutic approaches (Condrat et al., 2020). MiRNA has
several features which make it an ideal candidate for this role.
Firstly, it can be collected with minimal invasiveness from
biofluids that are easily accessible, such as saliva, serum, plasma
or urine (Huang, 2017; Lu and Rothenberg, 2018). In those biofluids,
miRNAs can be packaged in various extracellular vehicles, including
exosomes, microvesicles, and apoptotic bodies, as well as bound to
proteins like Ago2 or HDL molecules, which provides higher
stability (Nik Mohamed Kamal et al., 2020). Even after repeated
freezing and thawing, the stability of miRNA’s structure in biofluids
is a significant advantage (Banno et al., 2014). Collecting biofluids
from patients through liquid biopsy is a minimally invasive and
straightforward process. This makes diagnostics more accessible and
less expensive than tissue biopsy, which is significant in terms of
brain tumour (Eibl and Schneemann, 2023). In recent years,
miRNAs have gained importance as biomarkers for diagnosis,
prognosis, and developing therapeutic strategies for breast,
prostate, and lung cancers, melanoma, but also cardiovascular
and neuronal diseases (Faruq and Vecchione, 2015; Huang, 2017;
Wang et al., 2018; Bielska et al., 2021). Dysregulation of miRNA
expression is closely associated with the initiation, progression, and
metastasis of cancer. The diversity of miRNA-regulated genes
implies that these molecules can act as oncomiRs or as
suppressors in the context of cancer development (Bautista-
Sánchez et al., 2020). OncomiRs can promote tumour
development by targeting tumour suppressor (Ts), whereas
tumour suppressor miRNAs work by suppressing oncogenes,
leading to the inhibition of tumour progression (Banno et al.,
2014; Lin and Gregory, 2015).

Recent studies suggest that certain serum miRNAs have the
potential to diagnose glioma or distinguish its grade. Most research
on miRNA in glioma patients is based on the previous histological
classification of gliomas according to the 2016 WHO classification.
At that time, low-grade gliomas (LGG) belonged to grade I or II I–II,
while high-grade gliomas (HGG) were classified as grades III–IV,
including GBM (Louis et al., 2016). Using this classification, Wei
et al. (2016) found that the level of miR-125b in serum was
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significantly reduced in glioma patients compared to healthy
controls, and the gradual decrease in miR-125b levels was clearly
discernible at the stage rose. Additionally, Regazzo et al. (2016)
reported that miR-125b and miR-497 had a diagnostic value in
differentiating between GBM and lower-grade glioma cases. Wang
et al. (2019) revealed that upregulated cell-free miR-214 in serum
was significantly associated with higher tumour grade, absence of
isocitrate dehydrogenase, and unmethylated methylguanine
methyltransferase promoter.

Further studies shed light on the potential of serummiR-100 as a
promising biomarker for GBM diagnosis. The levels of this miRNA,
measured by qPCR, were significantly higher in GBM patients than
in healthy subjects (Zhang et al., 2019). Zhu et al. (2019) discovered
that the expression of miR-193b in serum and tumour tissue was
notably higher than in the non-tumour samples. The AUC value for
this miRNA exceeded 0.90, indicating its high prognostic potential
for glioma. A recent study has demonstrated that miR-582-5p and
miR-363 in serum can effectively distinguish GBM patients from
healthy individuals with remarkable specificity and sensitivity. The
prognostic value of miR-575 in GBM patients was demonstrated by
Gray et al. (2022) This miRNA promotes tumour progression and is
associated with worse overall survival. Géczi et al. (2021) found that
53 miRNAs were significantly differentially expressed in plasma
samples of patients with GBM compared to healthy donors.
However, the main limitation of this study was the small sample
size, which included only six GBM patients and six healthy controls.
In one of the latest studies, Sun et al. (2021) suggested that plasma
exosomal miR-2276-5p could potentially serve as a biomarker for
patients with glioma. The expression of this specific miRNA was
considerably decreased in patients with glioma, which correlated
with a reduced survival rate.

Despite numerous studies on potential biomarkers in glioma,
this area still requires standardisation, consistency and unification.
More knowledge regarding the specific serum miRNA profile in
patients with grade 4 of adult-diffuse gliomas classified based on
CNS5 WHO standards remains needed. Relatively easy analysis of
miRNA expression can significantly support the diagnosis,
particularly for patients with highly localised tumours and at
increased risk of perioperative mortality. In addition, examining
miRNA levels can be done recurrently, which could help to monitor
disease progression and response to treatment (Śledzińska
et al., 2021).

In the presented study, we are the first to report a serum
miRNA-based glioma 4 diagnostic model with high
discriminative ability in classifying grade 4 glioma patients from
grade 2–3 glioma cases. We also investigated the possible
involvement of circulating miRNAs in the highest-grade glioma
development by analysing the biological importance of miRNA
targets and the functional enrichment profile of their gene sets.

2 Materials and methods

2.1 Study cohort

In the presented study, serum samples were collected in the
Clinical Hospital in Bialystok by Biobank at the Medical
University of Bialystok, with high standards of strict

biobanking procedures for multi-omics studies (Niklinski
et al., 2017; Michalska-Falkowska et al., 2023). The study
group consisted of patients qualified for surgical treatment of
adult-type diffuse gliomas at different stages of development
(WHO, 2021 grade 2–4). All patients were grouped into
24 lower-grade gliomas CNS5 WHO grade 2 and 3 and
78 WHO grade 4 (Table 1). The serum was collected before
any treatment of cancer patients was started. The serum samples
were collected, centrifuged and stored at −80°C. A group of
102 individuals was qualified for further analysis. The
exclusion criteria for cases were patients diagnosed with other
types of cancer than an adult-type diffuse glioma, chemotherapy
or radiotherapy before serum collection and no cancer history.
All participants provided written informed consent and received
detailed information on the study and associated risks before
enrolment. This study was approved by the Bioethics Committee
of the Medical University of Bialystok, Poland (approval
numbers: R-I-002/357/2014, R-I-002/600/2019, and
APK.002.171.2021) and was performed according to the
principles of the Declaration of Helsinki.

2.2 Sample size estimation

Based on similar previous experiments and pilot data, we have
calculated the minimal number of samples per experimental group
(grade 4 or grade 2–3) to detect two-fold differences in relative
expression levels between groups at the true positive detection
powers of 80% and 90% (Hart et al., 2013). We have used the
RNASeqPower R package to apply the statistics data covering
obtained real counts and coefficients of variations per group. For
the NanoString nCounter miRNA data, we have estimated that to
obtain 80% power, we would need nine samples per group, whereas
to obtain a high power of 90%, we would need 12 samples. Finally,
our groups for NanoString analyses consisted of 78 (grade 4) and 24
(grade 2–3) samples, thus allowing for more than 90% power in any
of the comparisons performed.

2.3 RNA preparation and miRNA profiling by
NanoString

RNA isolation with miRNA fraction serum samples was
performed using the miRNeasy Serum/Plasma Advanced Kit
(Qiagen, Germany) according to the manufacturer’s instructions.
A total of 102 samples were analysed using the nCounter®Analysis
System (NanoString Technologies, WA, United States) and the
nCounter Human v3 miRNA Panel. Briefly, as input material,
3 ng of isolated miRNA was used. Unique RNA tags were ligated
onto the 3′ end of each mature miRNA, followed by an overnight
hybridisation (65°C) to nCounter Reporter and Capture probes.
After hybridisation, samples were placed into the nCounter Prep
Station for sample purification and target/probe complexes
immobilisation on the cartridge. For each assay, a high-density
scan (555 fields of view) was performed on the nCounter Digital
Analyzer (NanoString Technologies, United States) to count
individual fluorescent barcodes and quantify target miRNA
molecules present in each sample.
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2.4 qPCR

The seven DEmiRNAs and two reference miRNAs were profiled
using themiRCURY LNA SYBRGreen PCR Kit (Qiagen, Germany).
Reference miRNAs with stable expression across all samples, has-
miR-103-3p and has-199b-5p, were selected based on the
NanoString data using the NormFinder algorithm (Andersen et
al., 2004). The miRCURY LNA RT Kit (Qiagen, Germany) was used
for the reverse transcription reaction for miRNA assays. Assay IDs
are assembled in Supplementary Table S1. Quantitative real-time
PCR (RT-qPCR) was performed with miRCURY LNA SYBR® Green
PCR Kits (Qiagen, Germany) with specific commercial primers,
optimized with LNA technology to enable sensitive and specific
miRNA quantification. For STAT3, FOS and TLR4 mRNA analysis,
we used the Transcription High Fidelity cDNA Synthesis Kit (Roche,
Switzerland) and KiCqStart® SYBR® Green qPCR ReadyMix™
(Sigma-Aldrich, Germany). The following primers were used:
STAT3 FW-CTTTGAGACCGAGGTGTATCACC; STAT3 RV-
GGTCAGCATGTTGTACCACAGG; FOS FW-
GCCTCTCTTACTACCACTCACC; FOS RV-
AGATGGCAGTGACCGTGGGAAT; TLR4 FW-
CCCTGAGGCATTTAGGCAGCTA; FOS RV-
AGGTAGAGAGGTGGCTTAGGCT; GAPDH FW GTCTCCTCT
GACTTCAACAGCG; GAPDH RV-
ACCACCCTGTTGCTGTAGCCAA. The temperature profile of
the qPCT reaction was as follows: 2 min at 95°C and 45 cycles:
10 s at 95°C and 60 s at 56°C (for miRNA) and 60°C (for mRNA).
Amplification was performed using LightCycler 480 (Roche,
Switzerland). Subsequently, PCR threshold cycles (Ct) of the
tested miRNA/mRNA and reference miRNA/mRNA were
determined for the tested samples and the calibrator. The relative
expression for each miRNA/mRNA was calculated with PCR
efficiency correction (Pfaffl, 2001). Efficiency (E) was calculated
from the slopes of the calibration curve according to the equation: E
= 10 (−1/slope). Reactions with amplification efficiency below 1.6
were removed. The relative expression ratio of a target miRNA was
computed based on its PCR efficiencies (E) and the Ct value
difference (Δ) of unknown group samples (test) versus the

control group (Δ Ct control-test). The relative calculation was
based on the MEAN Ct of the experimental group.

2.5 Functional enrichment analysis and
network construction

The identification of DE miRNA target genes was performed
using Ingenuity Pathway Analysis Software (Krämer et al., 2014)
(IPA, Qiagen Inc. https://qiagenbioinformatics.com/products/
ingenuity-pathway analysis), mirDB database (Chen and Wang,
2020) (https://mirdb.org), and TagetScanHuman 8.0 database
(Agarwal et al., 2015) (https://www.targetscan.org/vert_80/). Gene
Ontology Biological Process and KEGG Pathway analyses were
conducted with the ClusterProfile R package (Yu et al., 2012).
IPA was used to perform the core analysis to identify canonical
pathways. Over-representation analyses used hypergeometric tests
under α = 0.05 (p-values corrected with FDR). To construct a PPI
network, we used STRING (https://string-db.org/; v.11.5). Genes
with a confidence score ≥0.4 were chosen to build a network model
visualised by Cytoscape v.3.9.1. Nine topological algorithms in plug-
in cytoHubba (Chin et al., 2014), consisting of “MCC,” “MNC,”
“Degree,” “Bottle Neck,” “EcCentricity,” “Closeness,” “Stress,” and
“Radiality” were selected to identify the hub genes in PPI analysis.
Analyses of functional interaction networks were based on the
HumanNet v3 platform by applying the HumenNet-FN
(functional gene network) mode (https://www.inetbio.org/
humannet/) (Kim et al., 2022).

2.6 WGCNA analysis

The discovery and the analysis of miRNA co-expression
modules in the patient’s tumour samples based on NanoString
data were performed with Weighted Gene Coexpression Network
Analysis (WGCNA) (Langfelder and Horvath, 2008) by
application of the WGCNA and CEMiTool R libraries (Russo
et al., 2018). Outliers were removed based on standardised

TABLE 1 Clinicopathological characteristics of the study cohort.

Characteristics Adult-type diffuse gliomas (%)

WHO CNS5 grade 4 n = 78 WHO CNS5 grade 2-3 n = 24 P val

Age at diagnosis (mean ± SD) 58.2 ± 10 48.7 ± 12 0.4

BMI (mean ± SD) 27.2 ± 5.0 26.7 ± 5.6 0.8

Size of tumour [mm] (mean ± SD) 4.4 ± 1.7 3.8 ± 2.1 0.3

Histological diagnosis (WHO 2021)

Astrocytoma 16 (20.5) 21 (87.5)

Oligodendroglioma - 3 (12.5)

Glioblastoma 62 (79.5) -

Molecular biomarkers

IDH1/2-mutant (MT) 16 (20.5) 24 (100)

IDH1/2-wildtype (WT) 62 (79.5) -

Frontiers in Molecular Biosciences frontiersin.org04

Niemira et al. 10.3389/fmolb.2024.1368372

https://qiagenbioinformatics.com/products/ingenuity-pathway
https://qiagenbioinformatics.com/products/ingenuity-pathway
https://mirdb.org
https://www.targetscan.org/vert_80/
https://string-db.org/
https://www.inetbio.org/humannet/
https://www.inetbio.org/humannet/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1368372


connectivity. Pearson correlation was used in the signed network
construction with soft threshold selection (R2 > 0.8). Modules
were merged based on a high eigengene similarity correlation
threshold (0.85). Gene modules to trait relationships were
evaluated with Spearman correlation. Within each WGCNA
module, an interaction network was analysed using CEMiTool.
Interaction networks integrate the miRNA co-expression results
with miRNA-target gene annotations based on miRTarBase 8.0
(Huang et al., 2020). Database miRTarBase provides
comprehensive information on experimentally validated
miRNA-target interactions from various literature data and
other databases that have been data mined and manually
curated. The top ten most connected genes were identified as
network hubs and are indicated with text labels and coloured based
on the interaction type (miRNA co-expression pattern–blue;
miRNA-target gene interaction–red; miRNA co-expression
pattern and miRNA-target gene interaction–yellow). The size of
each node is proportional to its degree, as indicated in the
plot legend.

2.7 Diagnostic model development

The normalised NanoString counts and RT-qPCR data were
used for model development. The attributes were selected using
Waikato Environment for Knowledge Analysis (WEKA) version
3.8.3. (c) 1999–2018 The University of Waikato, Hamilton,
New Zealand. The InfoGainAttributeEval algorithm was used to
select the best classifiers. Feature selection via information gain
using InfoGainAttributeEval was based on the calculation of
decreasing entropy by adding attributes and selection attributes
that most strongly reduce entropy. This method was carried out on
the testing set using the LOOCV (Wainer and Cawley, 2021; Rafało,
2022). A multivariate logistic regression model was built using
repeated (n = 3) k-fold-cross-validation (k = 10) in R version
3.6.1 [R Core Team (2013) R: A language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna. https://www.R-project.org] (Kuhn, 2008). To validate the
model, the ROC curve and the AUC were calculated by the pROC
package (Robin et al., 2011). The confusion matrix, including
information about TP (true positives), TN (true negatives), FP
(false positives), and FN (false negatives) has been prepared. The
evaluation of model classification has been based on the testing
dataset. The choice of miRNAs was evaluated using the
independent, external and publicly available dataset
GSE112462 from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112462),
which contains miRNA profiles of 28 glioma patients (18 patients
with grade 2–3 and 10 patients with grade 4) (Drusco et al., 2018).
This external data was generated using NanoString human miRNA
panel NS_H_MIR_V3A. A logistic regression model was developed
for this data according to the above workflow.

2.8 Statistical analysis

Statistical analyses were performed using GraphPad Prism 9
(v.9.3.1) software. The Wilcoxon rank sum test was used to

investigate the differences in BMI, age and size of tumours
between the grade 4 patients’ group and grade 2–3. Raw miRNA
data were analysed using nSolver Software v. 4.0 (NanoString
Technologies, WA, United States). Code-set content
normalisation was performed relative to the ligation controls for
technical variations. Ratios were calculated by specifying the lower-
grade samples as a baseline. According to Benjamin-Hochberg,
correction for multiple testing was performed with a False
Discovery Rate (FDR). The Pearson correlation coefficient (r)
was used to estimate the correlation between the identified DE
miRNAs and clinical parameters.

3 Results

3.1 Detection of circulatingmiRNAs in serum
samples from glioma patients before surgery

The expression levels of 798 miRNAs were quantified in the
study group consisted of patients qualified for surgical treatment of
adult-type diffuse gliomas of different stages of development
(according of WHO, 2021 classification), including 78 grade
4 gliomas and 24 grade 2 and 3. Altogether, seven unique
miRNAs showed significant differences in counts between grade
4 gliomas and grade 2–3 gliomas serum samples with fold change
(FC) > |1.5| and false discovery rates (FDRs) < 0.05 (Figure 1A).
Table 2 summarises FCs and FDRs for all seven differentially
expressed (DE) miRNAs. Five miRNAs were upregulated: miR-
630, miR-362-3p, miR-320e, miR-4454+miR-7975 (combined
because the mature sequence of miR-7975 differs from miR-
4454 by only one base), whereas two miRNAs were
downregulated: miR-1253 and miR-6721-5p. To validate the
diagnostic usefulness of identified miRNAs, we performed RT-
qPCR validation. All miRNAs were detectable by quantitative
PCR, and the expression profiles were similar to the ones
generated using the NanoString platform (Figure 1B). Next, we
used Pearson’s correlation to determine a statistically significant
relationship between miRNA expression levels and clinical
features such as grade, Karnofsky Performance Score (KPS) and
size of tumours (Figure 1C). The analysis indicated a positive
correlation between miR-362-3p expression and a negative
correlation between miR-6721-5p expression and gliomas’ grade
with a coefficient of 0.45 and −0.43, respectively (p-value = 1.87 ×
10−6 and p-value = 6.79 × 10−6). It means that the expression of
miR-362-3p increased in the case of higher-grade gliomas, while
the change in miR-6721-5p expression level was opposite to the
change in the grade of gliomas.

3.2 Evaluation of diagnostic values of
DE miRNAs

The receiver operating characteristic (ROC) curve analysis was
conducted to evaluate the diagnostic value of the identified miRNAs
as biomarkers for binary classification (glioma 4 vs. glioma 2–3)
(Figure 2A). The area under the ROC curve (AUC) for all miRNAs
was higher than 0.700 (p < 0.0001). The highest AUC values were
found for miR-362-3p, miR-630, and miR-320e (0.782, 0.769, and
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0.748, respectively). Corresponding AUC values, confidence
intervals (CI), sensitivity and specificity for cut-off points were
calculated and are shown in Supplementary Table S3.

3.3 Identification of the best combination of
miRNAs for grade 4 glioma detection

To select the combination of miRNAs with the strongest
classification power for discrimination between grade 4 of adult-
type diffuse glioma patients and lower grades, we applied the
Information Gain (InfoGainAttributeEval) selection method in
WEKA software to analyse obtained differentially expressed
miRNA data. The Information Gain method with the Ranker

FIGURE 1
Differential miRNA expression in the serum of glioma patients (A) The bar plots show the expression levels of circulating miRNAs in serum in grade
4 glioma patients compared to grade 2–3 glioma patients from the NanoString platform. Differences in the expression levels of miRNAs between patients
and controls were compared using the Mann-Whitney test. (B) RT-qPCR validation of seven miRNAs selected from the NanoString platform. Each bar
represents themean ratio of the differentially expressed (DE) miRNA expression andmiR-103a-3p andmiR-199-5p as referencemiRNAs ± standard
error of the mean (SEM). Asterisks indicate a significant difference compared to the control (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). (C)
Pearson correlation results of the DE miRNAs and grade, Karnofsky Performance Score (KPS) and max diameter of tumour. The colour scale (blue to red)
indicates correlation. The blue colour indicates a positive correlation, and red indicates the opposite.

TABLE 2 Overview of the DE miRNAs (−1.5 > FC > 1.5) in grade 4 patients
concerning grades 2 and 3. The arrows symbolise a way of regulation (up or
downregulation).

miRNA FC FDR

miR-630 1.98 <0.001

miR-362-3p 1.94 <0.001

miR-1253 −1.75 <0.001

miR-4454+miR-7975 2.04 <0.001

miR-320e 2.70 <0.001

miR-6721 −1.75 0.04

FC, fold change; FDR, false discovery rate.
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Search method is based on the calculation of decreasing entropy by
adding attributes, and Correlation-based feature selection prioritises
uncorrelated features (Wainer and Cawley, 2021; Rafało, 2022). The
three attributes by InfoGainAttributeEval Algorithms with the
Ranker Search Method were miR-362-3p, miR-6721-5p, and
miR-320e.

To assess the diagnostic values of the selected miR-362-3p,
miR-6721-5p, and miR-320e, multivariate logistic regression was
applied to develop the diagnostic models of the miRNAs under
combination conditions. K-fold cross-validation (K = 10) was
used to develop stable models. Based on the normalised
NanoString data, four models were derived: model 1 was built
on the expression of miR-362-3p and miR-6721-5p as
independent variables; model 2 included miR-362-3p and
miR-320e; model 3 was based on the expression of miR-6721-
5p and miR-320e, while model 4 included all three variables,
miR-362-3p, miR-320e, and miR-6721-5p (Table 3). To assess
the specificity and sensitivity of the four models, ROC curves
were drawn, as shown in Fig. XX. The AUC value for model 1 was

0.894, with the diagnostic sensitivity at 94.8% and the specificity
at 69.6% (Figure 2B). For model 2, AUC was 0.851, sensitivity
83.1% and specificity 63.6 (Supplementary Figure S2A). For
model 3, AUC was 0.831, sensitivity 89.6% and specificity
24.2% (Supplementary Figure S2B); for model 4, AUC was
0.862, sensitivity 92.8% and specificity 76.1% (Supplementary
Figure S2C). The data suggested the best classification accuracy
was achieved by model 1 (Table 4). In addition, the combination
model showed a higher sensitivity and better specificity than
individual miRNA.

3.4 Independent validation of the miR-362-
3p and miR-6721-5p dual model

Next, RT-qPCR analysis was performed to further validate the
value of circulating miR-362-3p and miR-6721-5p as prediction
markers for different grated of gliomas. The expression levels of
miR-362-3p and miR-6721-5p were normalised to the expression of

FIGURE 2
(A) ROC curves and AUC (Area Under the Curve) of DE miRNAs were obtained based on data on the expression level of miRNAmolecules using the
NanoString platform. (B) ROC curve and AUC for the diagnostic classification model based on data on the miR-362-3p and miR-6721-5p expression
levels obtained using the NanoString platform. The graph consists of the AUC value, sensitivity and specificity corresponding to that point. (C) ROC curves
and AUC for the diagnostic classificationmodel were obtained on data using the RT-qPCRmethod and external public data, which is included in the
Gene Expression Omnibus (GEO) database. The graphs contain the AUC value, sensitivity and specificity corresponding to that point.
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reference miRNAs, miR-103-3p and miR-199-5p. A diagnostic
classification model 5 was developed based on the normalised
RT-qPCR data. As shown in Figure 2C; Table 5, model
5 provided very good discrimination between grade 4 glioma and
lower grades, with the AUC value of 0.867, with a sensitivity of
82.9% and a specificity of 92.8%.

Next, further validation of the optimised miR-362-3p and miR-
6721-5p signature was performed using an external dataset
(GSE112462, NanoString human miRNA panel NS_H_MIR_
V3A), which contains miRNA profiles of 28 glioma patients
(18 patients with grade 2–3 and 10 patients with grade 4). We
found that model 6, developed based onmiR-362-3p andmiR-6721-
5p expression data in the GEO dataset, efficiently discriminated
between grade 4 glioma patients and lower grade glioma individuals

with AUC value of 0.842, sensitivity 66.7% and specificity 83.3%
(Figure 2C; Table 6).

3.5 Identification of hub genes using
network-based DE miRNA target genes

To reveal the biological function of the DE miRNAs, first, we
identified 5,657 putative DE miRNAs target genes using the
Ingenuity Pathway Analysis (IPA) (Krämer et al., 2014),
3,493 target genes via mirDB (Chen and Wang, 2020) and
11,944 target genes via TagetScanHuman 8.0 (Agarwal et al.,
2015) (Figure 3A). For further functional studies, we used
2,070 DE miRNA target genes that overlapped between the above
databases. Using Cytoscape v.3.9.1 (Shannon et al., 2003), we
constructed the protein-protein interaction (PPI) network,
including 2,067 nodes and 12,250 edges, to identify the critical
hub genes among the above miRNA target genes. The publicly
available NetworkAnalyst platform (Zhou et al., 2019) was used to
conduct “Zero order” interaction network analysis in a layout format
using a force atlas to visualise the network, which included
514 nodes and 876 edges (Supplementary Figure S1). Hub genes
in the network were ranked using eight topological analysis
methods, including both local- and global-based algorithms from
Cytoscape software’s cytoHubba plugin Pole (Chin et al., 2014). We
found that STAT3, FOS, TLR4, CPLX1, CPLX2, STX1A, STX1B,
VAMP2, MAPK3, and VEGFA scores ranked in the top (Figure 3A

TABLE 4 Summary of the basic parameters and standard quality measures of the models.

Name Variables TP rate TN rate Precision MCC AUC Intercept Coefficients

Model 1 x1 = miR-362-3p 0.948 0.696 0.879 0.687 0.894 0.7375 x1 = 0.082

x2 = miR-6721-5p x2 = −0.022

Model 2 x1 = miR-362-3p 0.831 0.636 0.842 0.463 0.851 −0.827 x1 = 0.016

x2 = miR-320e x2 = 0.001

Model 3 x1 = miR-6721-5p 0.896 0.242 0.734 0.180 0.831 0.764 x1 = 0.004

x2 = miR-320e x2 = 0.001

Model 4 x1 = miR-362-3p 0.928 0.761 0.780 0.695 0.862 2.348 x1 = 0.421

x2 = miR-320e x2 = 0.905

x3 = miR-6721-5p x3 = 0.998

T, true positive; FP, false positive; AU, the area under the curve.

TABLE 5 Table of confusion in the set for Model 1.

Actual state

miR-362-3p

miR-6721-5p

1 0

Prediction 1 71 (TP) 8 (FP)

0 2 (FN) 21 (TN)

TN, true negatives; TP, true negatives; FN, false negatives; FP, false positives.

TABLE 3 Summary of ROC parameters. AUC–area under curve, CI–confidence interval (95%), S–sensitivity and Sp–specificity.

DE miRNAs AUC Lower border CI (%) Upper border CI (%) S Sp

miR-320e 0.748 0.64 0.85 68.8 63.6

miR-4454+7975 0.747 0.65 0.84 62.3 66.7

miR-630 0.769 0.68 0.85 72.7 72.7

miR-362-3p 0.782 0.69 0.86 71.0 61.3

miR-1253 0.708 0.61 0.80 62.3 63.6

miR-6721 0.702 0.59 0.81 59.7 69.7
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and Supplementary Table S2). The highly connected hub gene
STAT3 encodes signal transducer and activator of transcription.
It is a multifunctional transcription factor involved in many
biological functions ranging from initiating malignant
transformation to tumour invasion, migration, metastasis and
angiogenesis (Tolomeo and Cascio, 2021).

Next, we investigated whether and how these 2070 prioritised
DE miRNA target genes could correlate with the stage of glioma. To
this end, we used the HumanNet v3 platform (Kim et al., 2022).
First, juxtaposed DE miRNAs target genes identified in our cohort
with genes related to “adult glioblastoma” from the publicly available
DisGeNET v7.0 database (Piñero et al., 2020). The 305 gene targets

TABLE 6 Summary of the basic parameters and common quality measures of Model 5 for RT-qPCR data and Model 6 for external data from GEO database.

Name Variables TP rate FP rate Precision MCC AUC Intercept Coefficients

Model 5 x1 = miR-362-3p 0.829 0.928 0.765 0.676 0.854 0.5995 x1 = 0.250

x2 = miR-6721-5p x2 = 0.2240

Model 6 x1 = miR-362-3p 0.667 0.833 0.667 0.500 0.871 6.921 x1 = −0.954

x2 = miR-6721-5p x2 = −0.066

TP, true positive; FP, false positive; MCC, the Matthews correlation coefficient; AUC, the area under the curve.

FIGURE 3
Functional annotation analysis of predicted miRNA-target genes. (A) Venn diagram showing the number of DEmiRNA target genes shared between
different databases: miRDB, TargetScan, and IPA; miRDB–microRNA Target Prediction Database; IPA–Ingenuity Pathway Analysis. (B) Venn diagram
showing the overlap of 305 DE miRNA target genes and genes related to “adult glioblastoma” from the DisGeNET database. Additionally, integrated
functional gene network analysis of 305 DE miRNA target genes with the HumanNet v3 platform. Network nodes represent guide (miRNA target
genes–green) genes and candidate genes (blue). Edges represent their associations. Edges guide and edges between guide genes and candidate genes
are presented; DisGeNET–a database of gene-disease associations.
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that overlapped between 2070 DE miRNAs target genes and
2,528 putative target genes related to “adult glioblastoma” were
analysed in terms of known interactions using HumanNet
v3 platform. Network analysis (Figure 3B) was performed based
on HumanNet (functional gene network) which includes co-
functional links (given by co-expression, co-essentiality, pathway
database, protein domain profile associations, gene neighbourhood,
and phylogenetic profile association) and protein-protein
interactions. The top guide gene within this network was also
STAT3 (score = 42), and the other guide genes within the top
scores included TP53, MAPK3, SP1, PML, BCL2L1, E2F1, RELA,
IGF1R, and CHEK1. Within the obtained network, we also identified
downstream candidate genes that could be functionally connected to
the 305 input guide genes. The top scores comprised STAT3 (score =
48.5), BAX, MDM2, EGFR, PRKACA, PRKACB, SRC, MAPK1,
MAPK8, and CTNNB1.

In addition, we evaluated the correlation between the expression
of the top 3 hub genes, STAT3, FOS and TLR4, in the grade 4 glioma
tissue and model 1 miRNAs, miR-362-3p and miR-6721-5p, in
serum. Expression of all these genes increased in tumour samples
(Figure 4A). The results, as shown in Figure 4B, demonstrate that the
correlation between the expression of miR-362-3p and the
expression of STAT3, FOS, and TRL4 was moderately positive
(0.56, 0.47 and 0.38, respectively) with a significant statistical
value of p < 0.0001. Conversely, a moderate negative correlation
was observed between miR-6721-5p and STAT3, FOS and TRL4
(0.52, 0.36 and 0.37, respectively). The correlations were also

statistically significant (p < 0.0001). It is worth emphasising that
the highest value for the correlation coefficients was observed for
both miRNAs and STAT3.

3.6 Functional enrichment analysis of the DE
miRNA gene targets

To explore the potential biological functions and mechanisms of
the DE miRNAs, 2070 DE miRNAs target genes were analysed by
KEGG, WikiPathways and GO-BP pathway enrichment analyses
using the enrichR tool (Kuleshov et al., 2016), as well as the
canonical pathway enrichment analyses by the IPA (Krämer
et al., 2014) Figure 5. The KEGG enrichment analysis indicated
that DEmiRNA target genes were mainly enriched in the JAK/STAT
signalling pathway (FDR-corrected p-value = 5.34 × 10−10), HIF-1
signalling pathway (FDR-corrected p-value = 8.21 × 10−10),
signalling pathways of pluripotency of stem cells (FDR-corrected
p-value = 2.89 × 10−9), glioma-related pathway (FDR-corrected
p-value = 5.94 × 10−9), and MAPK signalling pathway (FDR-
corrected p-value = 2.15 × 10−7) (Supplementary Figure S3). It is
noteworthy that the top 3 dysregulated pathways identified by the
WikiPathways tool included the brain-derived neurotrophic factor
(BDNF) signalling pathway (FDR-corrected p-value = 3.78 × 10−9),
glial cell differentiation (FDR-corrected p-value = 4.16 × 10−8), and
glioblastoma signalling pathway (FDR-corrected p-value = 6.92 ×
10−8). BDNF regulates cell growth, differentiation, migration and

FIGURE 4
(A) Expression level obtained by RNA-seq of STAT3, FOS and TLR4 genes. All gene expression levels between grade 4 glioma and grade 2–3 glioma
patients differed significantly (****p < 0.0001). (B) Pearson correlation of miR-362-3p and STAT3, FOS and TLR4 expression. (C) Pearson correlation of
miR-6721-5p with STAT3, FOS and TLR4 expression.
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apoptosis in the nervous system and high-grade gliomas (Xiong
et al., 2013). The IPA analysis showed the involvement of the
following canonical pathways: molecular mechanisms of cancer
(FDR-corrected p-value = 7.45 × 10−10), glioma signalling (FDR-
corrected p-value = 3.53 × 10−8), STAT3 signalling (FDR-corrected
p-value = 1.63 × 10−7), glioblastoma invasiveness signalling (FDR-
corrected p-value = 4.47 × 10−7), and synaptogenesis signalling
pathway (FDR-corrected p-value = 2.29 × 10−6). The results of
GO enrichment analysis showed that DE miRNA target genes
were mainly related to the regulation of transcription and
peptidyl-serine phosphorylation.

3.7 Construction of weighted gene co-
expression network and correlation with
clinical traits

To cluster DE miRNAs that are highly related to the clinical
traits, we used the Weighted Gene Co-Expression Network
(WGCNA) algorithm (Langfelder and Horvath, 2008) as a
standard method to find cooperatively expressed mRNA or
miRNA modules. The soft threshold value was set to 16, creating
a scale-free system (Supplementary Figure S4). Modules were
generated through dynamic tree cutting. After merging highly
similar modules, we developed a total of 17 modules. Module

M1 contained two DE miRNAs, miR-320e and miR-7975,
whereas module M2 includes four DE miRNAs, miR-630, miR-
362-3p, miR-6721-5p, and miR-4454. Additionally, we calculated
the correlation between each module and clinical parameters. We
identified that modules M1 and M2 were highly correlated with
grade, KPS, and tumour diameter (Figure 6A). The modules M1 and
M2 network graphs highlight significant miRNAs as network hubs,
such as miR-320e in module M1, and miR-362-3p, miR-630, and
miR-4454 in module M2 (Figure 6B). Gene set enrichment analysis
revealed that modules M1 and M2 were positively associated with
grade 4 gliomas (NES = 1.99 and NES = 2.16, respectively) and
negatively associated with the lower grades. Finally, the results of the
KEGG and canonical pathway enrichment analyses indicated that
the miRNA target genes from modules M1 and M2 were mainly
involved in the JAK-STAT signalling pathway (FDR-corrected
p-value = 2.56 × 10−13), tumour microenvironment pathway
(FDR-corrected p-value = 2.89 × 10−13), FoxO signalling pathway
(FDR-corrected p-value = 1.08 × 10−9), glioblastoma multiforme
signalling (FDR-corrected p-value = 3.11 × 10−13), and MAPK
signalling pathway (FDR-corrected p-value = 4.26 × 10−8).

4 Discussion

MiRNAs are integrally involved in developing and progressing
brain gliomas (Beylerli et al., 2022; Guo et al., 2022; Mafi et al., 2022).
Since miRNAs contribute to the dysregulation of cell cycle control,
cell proliferation, apoptosis, and other critical processes, their
biomarker potential could improve brain tumour monitoring
(Nikolova et al., 2024). Consequently, identifying unique serum
miRNA signatures as circulating biomarkers could greatly benefit
glioma management, allowing the avoidance of surgical biopsy for
patients at high risk of mortality. It may provide valuable
information regarding tumour status.

Our study strength lies in its innovative approach, which enables
the identification of a specific serum-derived miRNA signature in
glioma patients. Furthermore, we demonstrated that a two-miRNA
biomarker signature can successfully differentiate between grade
4 and lower-grade gliomas, improving diagnosis and tailoring
treatment options. To our knowledge, no currently known
miRNAs are specific for WHO CNS5 grade 4 gliomas. Thus far,
most research has relied on the WHO CNS4 (2016) classification
and frequently utilised qPCR to analyse a limited number of miRNA
candidates as biomarkers. Following the 2016 WHO
CNS4 guidelines, LGG (grades I and II) IDHmut samples are
classified as oligodendroglioma in the presence of 1p/19q
codeletion, while they are astrocytoma in the absence of 1p/19q
codeletion. LGG samples with IDHwt can be classified as other
glioma types. GBM can be classified as IDHmut or IDHwt. In
contrast, grade 4 adult gliomas, according to the WHO
CNS5 classification, are defined as IDH-mutant astrocytoma and
wild-type IDH glioblastomas (WHO, 2021). These tumours
histologically manifest necrosis and/or microvascular
proliferation. Additionally, WHO CNS5 grade 4 gliomas are
characterised by the typical brain-blood barrier (BBB)
breakdown. This dysfunctional barrier enables the transport of
miRNAs to body fluids, making them promising biomarkers
for gliomas.

FIGURE 5
KEGG pathway, WikiPathway, canonical pathway and GO
biological process enrichment analysis of 2070 DE miRNA target
genes. All functional annotations were performed with the
hypergeometric test and Bonferroni adjustment [corrected
p-value (FDR) ≤ 0.05]; KEGG–Kyoto Encyclopedia of Genes and
Genomes; GO–gene ontology.
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In this study, we assessed miRNA signatures in preoperative
serum samples obtained from 78 patients with grades 4 and 24 with
grades 2–3 gliomas, which were classified according to the latest
WHO CNS5 standards. Our study based on the rigorous
methodological design. To minimize potential inaccuracies due to
sample processing, our biobank has worked with the strictest
standard operating procedures. We also used a workflow with
highly validated procedures for miRNA expression analysis. In
the discovery phase, we used the nCounter® platform, to detect

miRNAs without relying on reverse transcription and amplification,
minimizing potential biases in experimental outcomes. It is worth
noting that comparing PCR-based methods and high-multiplex
approaches such as RNA-seq and microarray, NanoString
nCounter is more accurate and scalable and its results are highly
reproducible (Hong et al., 2021). Our findings indicate that the
expression levels of seven circulating miRNAs (miR-320e, miR-
4454, miR-7975, miR-630, miR-362-3p, miR-1253, and miR-6721-
5p) were significantly altered in grade 4 gliomas before surgery, as

FIGURE 6
Identification of modules using WGCNA analysis associated with the clinical traits. (A) Heatmap of the correlation between module eigengenes and
clinical characteristics; (B) miRNAs networks of modules M1 and M2. The top connected miRNAs (hubs) are labelled and coloured based on the
interaction type (miRNA co-expression pattern–blue; miRNA-target gene interaction–red; miRNA co-expression pattern and miRNA-target gene
interaction–yellow). The size of each node is proportional to its degree, as indicated in the plot legend. (C) Gene Set Enrichment Analyses showing
themodule activity of each grade of glioma. (D) KEGG pathway and canonical pathway enrichment analysis of miRNA target genes frommodules M1 and
M2. All functional annotations were performed with the hypergeometric test and Bonferroni adjustment [corrected p-value (FDR) ≤ 0.05]. KEGG–Kyoto
Encyclopedia of Genes and Genomes.
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compared to the lower grade cases. Notably, most miRNAs in this
group have been previously linked to cancer and/or glioma. For
instance, Pan et al. demonstrated a significant reduction of miR-
320e expression in glioma tissue compared to healthy tissue. MiR-
320e has been identified as a potential therapeutic target up-
regulating the PBX2/Raf-1/MAPK axis in glioma (Pan et al.,
2017). Similarly, miR-630 expression was downregulated in
CNS4 WHO glioblastoma (GBM) compared to non-neoplastic
white matter samples (Junior et al., 2020). Furthermore,
overexpression of miR-630 in the U87 GBM cell line reduced cell
proliferation and invasion. Similarly, Shi et al. demonstrated that
miR-362-3p expression was also reduced in GBM tissue, which
correlated with poor prognosis in GBM patients. MiR-362 targets
mitogen-activated protein kinase 1 (MAPK), contributing to tumour
development (Shi et al., 2020). Our study shows that the serum of
grade 4 patients contained decreased levels of three miRNAs, miR-
320e, miR-630, and miR-362-3p. As shown above, all of them can be
considered tumour suppressors. It has been recently reported that
tumour-suppressive miRNAs are significantly downregulated in
glioblastoma tissue (Rupaimoole et al., 2016; Chhatriya et al.,
2019). The release mechanisms of miRNAs from cancer cells and
the process of crossing the blood-brain barrier to enter systemic
circulation remain unclear. However, studies have identified that
extracellular miRNAs present in the blood are bound to
Ago2 protein or encapsulated in exosome (Skog et al., 2008; Shea
et al., 2016). For instance, Qi et al. discovered that oncosuppressors,
including miR-1298-5p, miR-122-5p and miR-204-5p, are
absolutely sorted into exosomes, leading to the downregulation of
their pool in tumour tissue (Qi et al., 2022). Conversely, the
oncomiR miR-9-5p remained trapped within the tumour cells
(Bandini et al., 2020).

Based on the miRNA’s expression profile in the serum of WHO
CNS5 grade 4 patients, we proposed a classification model to
improve the diagnosis of the highest grade of adult-type diffuse
gliomas. We identified two-miRNA biomarker signatures, miR-362-
3p and miR-6721-5p, effectively differentiating between WHO
CNS5 grade 4 and lower-grade gliomas with an AUC of 0.894,
94.8% sensitivity and 69.6% specificity. To date, numerous studies
have explored the potential of miRNAs as serum biomarkers for
gliomas. However, most analyses have relied on the WHO CNS4
2016 classification and focused on distinguishing between grade III-
IV glioma patients and those with grade I-II gliomas, differentiating
glioma and non-cancer controls, or developing biomarkers
specifically for glioblastoma multiforme (GBM). To the best of
our knowledge, we show for the first time that a diagnostic
model based on combined expression miR-362-3p and miR-
6721-5p has the potential to differentiate grade 4 adult-diffuse
gliomas from lower grade classified based onWHOCNS5 standards.

Furthermore, analysis of miRNA expression concerning
clinicopathological factors like grade of tumour, KPS and tumour
size confirmed that the level of both miR-362-3p and miR-6721-5p
miRNAs exhibited a correlation with glioma grading. Our studies
are following the latest observations showing that miR-362-3p,
along with miR-3651 and let-71-3p, are the most significant
contributors to stage prediction across eight types of cancer,
including bladder carcinoma, breast invasive cancer, oesophageal
carcinoma, kidney renal clear cell carcinoma, lung adenocarcinoma,
stomach adenocarcinoma, and uveal melanoma (Yerukala Sathipati

et al., 2023). Similarly, Tito et al. also demonstrated that miR-362-3p
has diagnostic potential as a part of a signature panel comprising
miR-193-3p, miR-572, miR-28-5, and miR-378, with an AUC of
0.801 in stage I of clear cell renal cell carcinoma (Tito et al., 2021).
Additionally, miR-362-3p has been detected in the plasma of
patients with colorectal cancer (CRC). Its levels were significantly
lower in CRC patients compared to healthy individuals or patients
with benign colorectal conditions (Mehrgou et al., 2021). miR-362-
3p has also been significantly altered in the serum for lung cancer
patients. Its levels are correlated with the tumour stage and might be
associated with lung cancer development and metastasis (Wani
et al., 2022). These studies suggest that miR-362-3p has the
potential to be utilised as a circulating biomarker for various cancers.

Our analysis of predicted differentially expressed miRNA target
genes showed gene enrichment in critical cancer pathways linked to
tumorigenesis, including the RAS, STAT3, FoxO, MAPK, PI3K-
Akt signalling pathways, as well as glioblastoma invasiveness
signalling. These pathways are involved in the regulation of
proliferation, differentiation, survival, and angiogenesis. RAS
protein signalling is essential for WHO CNS4 glioblastoma
(GBM) tumorigenesis (Pearson and Regad, 2017). RAS activates
RAF/MEK/MAPK and PI3K/AKT cascades to promote cell
proliferation, survival and uncontrolled growth of GBM
(Fonseca et al., 2008; Mao et al., 2012).

In addition to these pathways, we identified the top 10 hub genes
by network-based analysis, including STAT3, FOS, TLR4, CPLX1,
CPLX2, STX1B, VAMP1, MAPK3, and VEGFA. Leveraging the
HumanNet-FN tool, we also identified top guide and candidate
genes within the created networks based on overlapping putative
targets mRNA identified for the serum miRNA profile and genes
related to adult glioblastoma by the DisGenNET databases. STAT3
was recognised as the top guide gene. The abnormal activation of
STAT3 promotes tumour proliferation, angiogenesis, and immune
escape (Fu et al., 2023). Additionally, STAT3 is necessary for the
proliferation and maintenance of pluripotency of GBM stem cells
(Sherry et al., 2009). Genes encoding SNARE proteins, including
syntaxin, Stx1, Stx2, and Vamp2, were also identified as hub putative
DE miRNA target genes. These proteins are required for calcium-
dependent exocytosis and neurotransmitter release within the
nervous system (Jahn and Fasshauer, 2012). Given that SNARE
proteins are involved in neuronal migration and that GBM is an
extremely invasive tumour, it has been shown that Stx1 inactivation
significantly reduced the growth and progression of GBM in vivo
(Ulloa et al., 2015).

In conclusion, we have identified seven differentially expressed
serum-derived miRNAs in WHO grade 4 gliomas and presented
their functional analysis. Moreover, we developed a diagnostic
model combining two serum-circulating miR-362-3p and miR-
6721-5p expressions, which could be used as a non-invasive tool
for grading gliomas in clinical applications.

Despite the novelty aspect, our study also has some limitations.
Firstly, the sample size is limited; thus, results should be considered
preliminary. Secondly, despite the effort to balance cancer samples
while building the grade 4 glioma diagnosis model, there were still
some imbalances in the size of groups of different glioma stages
while constructing the model, resulting in over-representation of
grade 4 glioma over grade 2–3. Therefore, further validation by
multiple-centre and large-scale investigations using larger patient

Frontiers in Molecular Biosciences frontiersin.org13

Niemira et al. 10.3389/fmolb.2024.1368372

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1368372


cohorts will be required to help strengthen the value of the two-
miRNA model for clinical application.

In summary, this work presents a candidate non-invasive
biomarker for a grade prediction of adult-type diffuse glioma.
We verified that the increased expression levels of circulating
miR-362-3p and reduced circulating miR-6721-5p displayed a
high diagnostic value to differentiate grade 4 glioma patients
from lower grade cases (grade 2–3). Our study demonstrates the
efficacy of the novel approach for grade classification of glioma. The
implementation of this model could offer complementary support to
the preoperative diagnostic. Furthermore, our model could
complement neuroradiology to support clinical decision-making
and could be used in routine screening.
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