8,714 research outputs found

    Assessing access of galactic cosmic rays at Moon\u27s orbit

    Get PDF
    [1] Characterizing the lunar radiation environment is essential for preparing future robotic and human explorations on lunar bases. Galactic cosmic rays (GCR) represent one source of ionizing radiation at the Moon that poses a biological risk. Because GCR are charged particles, their paths are affected by the magnetic fields along their trajectories. Unlike the Earth, the Moon has no strong, shielding magnetic field of its own. However, as it orbits Earth, the Moon traverses not only the weak interplanetary magnetic field but also the distant magnetic tail of Earth\u27s magnetosphere. We combine an empirical magnetic field model of Earth\u27s magnetosphere with a fully-relativistic charged particle trajectory code to model and assess the access of GCR at the Moon\u27s orbit. We follow protons with energies of 1, 10 and 100 MeV starting from an isotropic distribution at large distances outside a volume of space including Earth\u27s magnetosphere and the lunar orbit. The simulation result shows that Earth\u27s magnetosphere does not measurably modify protons of energy greater than 1 MeV at distances outside the geomagnetic cutoff imposed by Earth\u27s strong dipole field very near to the planet. Therefore, in contrast to Winglee and Harnett (2007), we conclude that Earth\u27s magnetosphere does not provide any substantial magnetic shielding at the Moon\u27s orbit. These simulation results will be compared to LRO/CRaTER data after its planned launch in June 2009

    Ab initio study of reflectance anisotropy spectra of a sub-monolayer oxidized Si(100) surface

    Full text link
    The effects of oxygen adsorption on the reflectance anisotropy spectrum (RAS) of reconstructed Si(100):O surfaces at sub-monolayer coverage (first stages of oxidation) have been studied by an ab initio DFT-LDA scheme within a plane-wave, norm-conserving pseudopotential approach. Dangling bonds and the main features of the characteristic RAS of the clean Si(100) surface are mostly preserved after oxidation of 50% of the surface dimers, with some visible changes: a small red shift of the first peak, and the appearance of a distinct spectral structure at about 1.5 eV. The electronic transitions involved in the latter have been analyzed through state-by-state and layer-by-layer decompositions of the RAS. We suggest that new interplay between present theoretical results and reflectance anisotropy spectroscopy experiments could lead to further clarification of structural and kinetic details of the Si(100) oxidation process in the sub-monolayer range.Comment: 21 pages, 8 figures. To be published in Physical Rev.

    Magnetohydrodynamic Modeling of Three Van Allen Probes Storms in 2012 and 2013

    Get PDF
    Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L=4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon–Fedder–Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8–9 October 2012 and 17–18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes

    Orthogonal, solenoidal, three-dimensional vector fields for no-slip boundary conditions

    Get PDF
    Viscous fluid dynamical calculations require no-slip boundary conditions. Numerical calculations of turbulence, as well as theoretical turbulence closure techniques, often depend upon a spectral decomposition of the flow fields. However, such calculations have been limited to two-dimensional situations. Here we present a method that yields orthogonal decompositions of incompressible, three-dimensional flow fields and apply it to periodic cylindrical and spherical no-slip boundaries.Comment: 16 pages, 2 three-part figure

    Magnetohydrodynamic activity inside a sphere

    Full text link
    We present a computational method to solve the magnetohydrodynamic equations in spherical geometry. The technique is fully nonlinear and wholly spectral, and uses an expansion basis that is adapted to the geometry: Chandrasekhar-Kendall vector eigenfunctions of the curl. The resulting lower spatial resolution is somewhat offset by being able to build all the boundary conditions into each of the orthogonal expansion functions and by the disappearance of any difficulties caused by singularities at the center of the sphere. The results reported here are for mechanically and magnetically isolated spheres, although different boundary conditions could be studied by adapting the same method. The intent is to be able to study the nonlinear dynamical evolution of those aspects that are peculiar to the spherical geometry at only moderate Reynolds numbers. The code is parallelized, and will preserve to high accuracy the ideal magnetohydrodynamic (MHD) invariants of the system (global energy, magnetic helicity, cross helicity). Examples of results for selective decay and mechanically-driven dynamo simulations are discussed. In the dynamo cases, spontaneous flips of the dipole orientation are observed.Comment: 15 pages, 19 figures. Improved figures, in press in Physics of Fluid

    Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere

    Get PDF
    Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest Reynolds numbers, which in turn amplifies a small seed magnetic field that is introduced. A wide variety of dynamo activity is observed, all at unit magnetic Prandtl number. The code lacks the resolution to probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be plentiful in those parts of parameter space in which the code is accurate. The key control parameters seem to be mechanical and magnetic Reynolds numbers, the Rossby and Ekman numbers (which in our computations are varied mostly by varying the rate of rotation of the sphere) and the amount of mechanical helicity injected. Magnetic energy levels and magnetic dipole behavior are exhibited which fluctuate strongly on a time scale of a few eddy turnover times. These seem to stabilize as the rotation rate is increased until the limit of the code resolution is reached.Comment: 26 pages, 17 figures, submitted to New Journal of Physic

    Reactive Control Improvisation

    Full text link
    Reactive synthesis is a paradigm for automatically building correct-by-construction systems that interact with an unknown or adversarial environment. We study how to do reactive synthesis when part of the specification of the system is that its behavior should be random. Randomness can be useful, for example, in a network protocol fuzz tester whose output should be varied, or a planner for a surveillance robot whose route should be unpredictable. However, existing reactive synthesis techniques do not provide a way to ensure random behavior while maintaining functional correctness. Towards this end, we generalize the recently-proposed framework of control improvisation (CI) to add reactivity. The resulting framework of reactive control improvisation provides a natural way to integrate a randomness requirement with the usual functional specifications of reactive synthesis over a finite window. We theoretically characterize when such problems are realizable, and give a general method for solving them. For specifications given by reachability or safety games or by deterministic finite automata, our method yields a polynomial-time synthesis algorithm. For various other types of specifications including temporal logic formulas, we obtain a polynomial-space algorithm and prove matching PSPACE-hardness results. We show that all of these randomized variants of reactive synthesis are no harder in a complexity-theoretic sense than their non-randomized counterparts.Comment: 25 pages. Full version of a CAV 2018 pape

    Substantiating a political public sphere in the Scottish press : a comparative analysis

    Get PDF
    This article uses content analysis to characterize the performance of the media in a national public sphere, by setting apart those qualities that typify internal press coverage of a political event. The article looks at the coverage of the 1999 devolved Scottish election from the day before the election until the day after. It uses a word count to measure the election material in Scottish newspapers the Herald, the Press and Journal and the Scotsman, and United Kingdom newspapers the Guardian, the Independent and The Times, and categorizes that material according to discourse type, day and page selection. The article finds a number of qualities that typify the Scottish sample in particular, and might be broadly indicative of a political public sphere in action. Firstly, and not unexpectedly, it finds that the Scottish newspapers carry significantly more election coverage. Just as tellingly, though, the article finds that the Scottish papers offer a greater proportion of advice and background information, in the form of opinion columns and feature articles. It also finds that the Scottish papers place a greater concentration of both informative and evaluative material in the period before the vote, consistent with their making a contribution to informed political action. Lastly, the article finds that the Scottish sample situates coverage nearer the front of the paper and places a greater proportion on recto pages. The article therefore argues that the Scottish papers display features that distinguish them from the UK papers, and are broadly consistent with their forming part of a deliberative public sphere, and suggests that these qualities might be explored as a means of judging future media performance
    • 

    corecore