18 research outputs found

    Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means

    Get PDF
    The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical fuels. Many fuel forms such as coal, oil and gas have been intensively used and are becoming limited. Hydrogen could become an important clean fuel for the future. Among different technologies for hydrogen production, oxygenic natural and artificial photosynthesis using direct photochemistry in synthetic complexes have a great potential to produce hydrogen as both use clean and cheap sources - water and solar energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms water is splitted into electrons and protons during primary photosynthetic processes. The electrons and protons are redirected through the photosynthetic electron transport chain to the hydrogen-producing enzymes-hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (> 10%). Our review examines the main pathways of H2 photoproduction using photosynthetic organisms and biomimetic photosynthetic systems and focuses on developing new technologies based on the effective principles of photosynthesis

    Photoelectrochemical cells based on photosynthetic systems: a review

    No full text
    Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f) or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2). The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b), by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm), will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems

    The impact of the phytochromes on photosynthetic processes

    No full text
    This review describes the phytochrome system in higher plants and cyanobacteria and its role in regulation of photosynthetic processes and stress protection of the photosynthetic apparatus. A relationship between the content of the different phytochromes, the changes in the ratios of the physiologically active forms of phytochromes to their total pool and the resulting influence on photosynthetic processes is reviewed. The role of the phytochromes in the regulation of the expression of genes encoding key photosynthetic proteins, antioxidant enzymes and other components involved in stress signaling is elucidated

    The impact of the phytochromes on photosynthetic processes

    No full text
    This review describes the phytochrome system in higher plants and cyanobacteria and its role in regulation of photosynthetic processes and stress protection of the photosynthetic apparatus. A relationship between the content of the different phytochromes, the changes in the ratios of the physiologically active forms of phytochromes to their total pool and the resulting influence on photosynthetic processes is reviewed. The role of the phytochromes in the regulation of the expression of genes encoding key photosynthetic proteins, antioxidant enzymes and other components involved in stress signaling is elucidated

    Influence of Light of Different Spectral Compositions on Growth Parameters, Photosynthetic Pigment Contents and Gene Expression in Scots Pine Plantlets

    No full text
    The photoreceptors of red light (phytochromes) and blue light (cryptochromes) impact plant growth and metabolism. However, their action has been barely studied, especially in coniferous plants. Therefore, the influence of blue (maximum 450 nm), red (maximum 660 nm), white light (maxima 450 nm + 575 nm), far-red light (maximum 730 nm), white fluorescent light and dark on seed germination, growth, chlorophyll and carotenoid contents, as well as the transcript levels of genes involved in reception, photosynthesis, light and hormonal signaling of Scots pine plantlets, was investigated. The highest values of dry weight, root length and photosynthetic pigment contents were characteristic of 9-day-old plantlets grown under red light, whereas in the dark plantlet length, seed vigor, seed germination, dry weight and pigment contents were decreased. Under blue and white lights, the main studied morphological parameters were decreased or close to red light. The cotyledons were undeveloped under dark conditions, likely due to the reduced content of photosynthetic pigments, which agrees with the low transcript levels of genes encoding protochlorophyllide oxidoreductase (PORA) and phytoene synthase (PSY). The transcript levels of a number of genes involved in phytohormone biosynthesis and signaling, such as GA3ox, RRa, KAO and JazA, were enhanced under red light, unlike under dark conditions. We suggest that the observed phenomena of red light are the most important for the germination of the plantlets and may be based on earlier and enhanced expression of auxin, cytokinin, gibberellin and jasmonate signaling genes activated by corresponding photoreceptors. The obtained results may help to improve reforestation technology; however, this problem needs further study

    Impact of weak water deficit on growth, photosynthetic primary processes and storage processes in pine and spruce seedlings

    No full text
    We investigated the influence of 40 days of drought on growth, storage processes and primary photosynthetic processes in 3-month-old Scots pine and Norway spruce seedlings growing in perlite culture. Water stress significantly affected seedling water status, whereas absolute dry biomass growth was not substantially influenced. Water stress induced an increase in non-structural carbohydrate content (sugars, sugar alcohols, starch) in the aboveground part of pine seedlings in contrast to spruce seedlings. Due to the relatively low content of sugars and sugar alcohols in seedling organs, their expected contribution to osmotic potential changes was quite low. In contrast to biomass accumulation and storage, photosynthetic primary processes were substantially influenced by water shortage. In spruce seedlings, PSII was more sensitive to water stress than PSI. In particular, electron transport in PSI was stable under water stress despite the substantial decrease of electron transport in PSII. The increase in thermal energy dissipation due to enhancement of non-photochemical quenching (NPQ) was evident in both species under water stress. Simultaneously, the yields of non-regulated energy dissipation in PSII were decreased in pine seedlings under drought. A relationship between growth, photosynthetic activities and storage processes is analysed under weak water deficit

    The Multiple Roles of Various Reactive Oxygen Species (ROS) in Photosynthetic Organisms

    No full text
    This chapter provides an overview on recent developments and current knowledge about monitoring, generation and the functional role of reactive oxygen species (ROS) - H2O2, HO2, HO, OH-, 1O2 and O2 - - in both oxidative degradation and signal transduction in photosynthetic organisms including a summary of important mechanisms of nonphotochemical quenching in plants. We further describe microscopic techniques for ROS detection and controlled generation. Reaction schemes elucidating formation, decay and signaling of ROS in cyanobacteria as well as from chloroplasts to the nuclear genome in eukaryotes during exposure of oxygen-evolving photosynthetic organisms to oxidative stress are discussed that target the rapidly growing field of regulatory effects of ROS on nuclear gene expression. © 2016 Scrivener Publishing LLC. All rights reserved.1

    Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms

    Get PDF
    AbstractThis review provides an overview about recent developments and current knowledge about monitoring, generation and the functional role of reactive oxygen species (ROS) – H2O2, HO2, HO, OH−, 1O2 and O2− – in both oxidative degradation and signal transduction in photosynthetic organisms including microscopic techniques for ROS detection and controlled generation. Reaction schemes elucidating formation, decay and signaling of ROS in cyanobacteria as well as from chloroplasts to the nuclear genome in eukaryotes during exposure of oxygen-evolving photosynthetic organisms to oxidative stress are discussed that target the rapidly growing field of regulatory effects of ROS on nuclear gene expression

    The Effect of Short-Term Heating on Photosynthetic Activity, Pigment Content, and Pro-/Antioxidant Balance of <i>A. thaliana</i> Phytochrome Mutants

    No full text
    The effects of heating (40 °C, 1 and 2 h) in dark and light conditions on the photosynthetic activity (photosynthesis rate and photosystem II activity), content of photosynthetic pigments, activity of antioxidant enzymes, content of thiobarbituric acid reactive substances (TBARs), and expression of a number of key genes of antioxidant enzymes and photosynthetic proteins were studied. It was shown that, in darkness, heating reduced CO2 gas exchange, photosystem II activity, and the content of photosynthetic pigments to a greater extent in the phyB mutant than in the wild type (WT). The content of TBARs increased only in the phyB mutant, which is apparently associated with a sharp increase in the total peroxidase activity in WT and its decrease in the phyB mutant, which is consistent with a noticeable decrease in photosynthetic activity and the content of photosynthetic pigments in the mutant. No differences were indicated in all heated samples under light. It is assumed that the resistance of the photosynthetic apparatus to a short-term elevated temperature depends on the content of PHYB active form and is probably determined by the effect of phytochrome on the content of low-molecular weight antioxidants and the activity of antioxidant enzymes
    corecore