16 research outputs found

    Ultrafast optical control of entanglement between two quantum dot spins

    Full text link
    The interaction between two quantum bits enables entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots much work has focused on demonstrating single spin qubit control using optical techniques. However, optical control of entanglement of two spin qubits remains a major challenge for scaling from a single qubit to a full-fledged quantum information platform. Here, we combine advances in vertically-stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunneling, where the tunneling rate determines how rapidly entangling operations can be performed. The two-qubit gate speeds achieved here are over an order of magnitude faster than in other systems. These results demonstrate the viability and advantages of optically controlled quantum dot spins for multi-qubit systems.Comment: 24 pages, 5 figure

    Polarized photoreflectance and photoluminescence spectroscopy of InGaAs/GaAs quantum rods grown with As2 and As4 sources

    Get PDF
    We report photoreflectance (PR) and photoluminescence (PL) investigations of the electronic and polarization properties of different aspect ratio (height/diameter) InGaAs quantum rods (QRs) embedded in InGaAs quantum wells (QWs). These nanostructures were grown by molecular beam epitaxy using As2 or As4 sources. The impact of the As source on the spectral and polarization features of the QR- and QW-related interband transitions was investigated and explained in terms of the carrier confinement effects caused by variation of composition contrast between the QR material and the surrounding well. Polarized PR and PL measurements reveal that the polarization has a preferential direction along the [ 110] crystal axis with a large optical anisotropy of about 60% in the (001) plane for high aspect ratio (4.1:1) InGaAs QRs. As a result, in PL spectra, the transverse magnetic mode dominated (110)-cleaved surfaces (TM[001] > TE[110]), whereas the transverse electric mode prevailed for (110)-cleaved surfaces (TM[001] < TE[110] ¯ ). This strong optical anisotropy in the (001) plane is interpreted in terms of the hole wavefunction orientation along the [ 110] direction for high aspect ratio QRs

    Growth of Low-Density Vertical Quantum Dot Molecules with Control in Energy Emission

    Get PDF
    In this work, we present results on the formation of vertical molecule structures formed by two vertically aligned InAs quantum dots (QD) in which a deliberate control of energy emission is achieved. The emission energy of the first layer of QD forming the molecule can be tuned by the deposition of controlled amounts of InAs at a nanohole template formed by GaAs droplet epitaxy. The QD of the second layer are formed directly on top of the buried ones by a strain-driven process. In this way, either symmetric or asymmetric vertically coupled structures can be obtained. As a characteristic when using a droplet epitaxy patterning process, the density of quantum dot molecules finally obtained is low enough (2 × 108 cm−2) to permit their integration as active elements in advanced photonic devices where spectroscopic studies at the single nanostructure level are required

    The 2019 surface acoustic waves roadmap

    Get PDF
    Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science

    Optical control of one and two hole spins in interacting quantum dots

    Full text link
    A single hole spin in a semiconductor quantum dot has emerged as a quantum bit that is potentially superior to an electron spin. A key feature of holes is that they have a greatly reduced hyperfine interaction with nuclear spins, which is one of the biggest difficulties in working with an electron spin. It is now essential to show that holes are viable for quantum information processing by demonstrating fast quantum gates and scalability. To this end we have developed InAs/GaAs quantum dots coupled through coherent tunneling and charged with controlled numbers of holes. We report fast, single qubit gates using a sequence of short laser pulses. We then take the important next step toward scalability of quantum information by optically controlling two interacting hole spins in separate dots.Comment: 5 figure

    The 2019 surface acoustic waves roadmap

    Get PDF
    Abstract Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science.EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 642688 (SAWtrain)

    A quantum dot in a Fermi sea

    No full text

    Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence

    No full text
    Reliable preparation, manipulation and measurement protocols are necessary to exploit a physical system as a quantum bit1. Spins in optically active quantum dots offer one potential realization2,3 and recent demonstrations have shown high-fidelity preparation4,5 and ultrafast coherent manipulation6,7,8. The final challenge—that is, single-shot measurement of the electron spin—has proved to be the most difficult of the three and so far only time-averaged optical measurements have been reported9,10,11,12. The main obstacle to optical spin readout in single quantum dots is that the same laser that probes the spin state also flips the spin being measured. Here, by using a gate-controlled quantum dot molecule13,14,15, we present the ability to measure the spin state of a single electron in real time via the intermittency of quantum dot resonance fluorescence12,16. The quantum dot molecule, unlike its single quantum dot counterpart, allows separate and independent optical transitions for state preparation, manipulation and measurement, avoiding the dilemma of relying on the same transition to address the spin state of an electron
    corecore