68 research outputs found

    Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy

    Get PDF
    Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.G1n67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.G1n67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.G1n67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors

    Genotype–Phenotype Correlation in DFNB8/10 Families with TMPRSS3 Mutations

    Get PDF
    In the present study, genotype–phenotype correlations in eight Dutch DFNB8/10 families with compound heterozygous mutations in TMPRSS3 were addressed. We compared the phenotypes of the families by focusing on the mutation data. The compound heterozygous variants in the TMPRSS3 gene in the present families included one novel variant, p.Val199Met, and four previously described pathogenic variants, p.Ala306Thr, p.Thr70fs, p.Ala138Glu, and p.Cys107Xfs. In addition, the p.Ala426Thr variant, which had previously been reported as a possible polymorphism, was found in one family. All affected family members reported progressive bilateral hearing impairment, with variable onset ages and progression rates. In general, the hearing impairment affected the high frequencies first, and sooner or later, depending on the mutation, the low frequencies started to deteriorate, which eventually resulted in a flat audiogram configuration. The ski-slope audiogram configuration is suggestive for the involvement of TMPRSS3. Our data suggest that not only the protein truncating mutation p.T70fs has a severe effect but also the amino acid substitutions p.Ala306Thr and p.Val199Met. A combination of two of these three mutations causes prelingual profound hearing impairment. However, in combination with the p.Ala426Thr or p.Ala138Glu mutations, a milder phenotype with postlingual onset of the hearing impairment is seen. Therefore, the latter mutations are likely to be less detrimental for protein function. Further studies are needed to distinguish possible phenotypic differences between different TMPRSS3 mutations. Evaluation of performance of patients with a cochlear implant indicated that this is a good treatment option for patients with TMPRSS3 mutations as satisfactory speech reception was reached after implantation

    Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy

    Get PDF
    Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors

    The natural history and genotype–phenotype correlations of TMPRSS3 hearing loss:an international, multi-center, cohort analysis

    Get PDF
    TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype–phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.</p

    Occupational Noise, Smoking, and a High Body Mass Index are Risk Factors for Age-related Hearing Impairment and Moderate Alcohol Consumption is Protective: A European Population-based Multicenter Study

    Get PDF
    A multicenter study was set up to elucidate the environmental and medical risk factors contributing to age-related hearing impairment (ARHI). Nine subsamples, collected by nine audiological centers across Europe, added up to a total of 4,083 subjects between 53 and 67 years. Audiometric data (pure-tone average [PTA]) were collected and the participants filled out a questionnaire on environmental risk factors and medical history. People with a history of disease that could affect hearing were excluded. PTAs were adjusted for age and sex and tested for association with exposure to risk factors. Noise exposure was associated with a significant loss of hearing at high sound frequencies (>1 kHz). Smoking significantly increased high-frequency hearing loss, and the effect was dose-dependent. The effect of smoking remained significant when accounting for cardiovascular disease events. Taller people had better hearing on average with a more pronounced effect at low sound frequencies (<2 kHz). A high body mass index (BMI) correlated with hearing loss across the frequency range tested. Moderate alcohol consumption was inversely correlated with hearing loss. Significant associations were found in the high as well as in the low frequencies. The results suggest that a healthy lifestyle can protect against age-related hearing impairment

    Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction

    Get PDF
    Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein–protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    \u3ci\u3eGrxcr2\u3c/i\u3e is required for stereocilia morphogenesis in the cochlea

    Get PDF
    Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene. Peak expression of Grxcr2 occurs during early postnatal development of the inner ear and GRXCR2 is localized to stereocilia in both the cochlea and in vestibular organs. Homozygous Grxcr2 deletion mutants exhibit significant hearing loss by 3 weeks of age that is associated with developmental defects in stereocilia bundle orientation and organization. Despite these bundle defects, the mechanotransduction apparatus assembles in relatively normal fashion as determined by whole cell electrophysiological evaluation and FM1-43 uptake. Although Grxcr2 mutants do not exhibit overt vestibular dysfunction, evaluation of vestibular evoked potentials revealed subtle defects of the mutants in response to linear accelerations. In addition, reduced Grxcr2 expression in a hypomorphic mutant strain is associated with progressive hearing loss and bundle defects. The stereocilia localization of GRXCR2, together with the bundle pathologies observed in the mutants, indicate that GRXCR2 plays an intrinsic role in bundle orientation, organization, and sensory function in the inner ear during development and at maturity

    Novel mutation in AAA domain of BCS1L causing Bjornstad syndrome

    No full text
    Item does not contain fulltextBjornstad syndrome is an extremely rare condition characterized by pilitorti and nerve deafness. Only few large families have been reported worldwide. Here we describe a large Pakistani family with five affected individuals. The hair fibers of all the patients were twisted around their axis and devoid of any pigment. In addition the patients had a moderate-to-severe degree of hearing impairment. Genotyping with high-density single-nucleotide polymorphism arrays showed homozygosity in two intervals on chromosome 2. Linkage with one of these regions (genomic position 218745685-221025443, hg19) was confirmed. This region encompasses the BCS1L gene. Mutations in this gene have previously been associated with Bjornstad's syndrome. We sequenced the BCS1L gene for identification of the causative mutation in the family. A novel homozygous missense mutation c.901T>A was identified, which segregated with the disease in the family. This mutation results in the amino acid change p.Tyr301Asn and was predicted to be pathogenic by bioinformatics tools
    • …
    corecore