85 research outputs found

    Evaluation of Acellular Dermis for Closure of Abdominal Wall Defects in a Rat Model

    Get PDF
    Background: Abdominal wall repair can be performed with synthetic or biological materials. Biological materials may reduce the risk of infections and fibrosis. The aim of this study was to evaluate two acellular human dermis products. Materials and Methods: A rat model was used to compare the two materials. One was prepared using low concentrations of NaOH; the other material was SureDerm (TM), which is commercially available. Full thickness defects were prepared in the abdominal wall and closed with the materials. Rats were sacrificed at 1 or 4 months after operation and the numbers of adhesions to the bowels were scored. Samples were taken for histological analysis and to measure the breaking strength. Results: In both groups a good functional integration of the implants with the abdominal wall was observed. There was no adhesion formation with the bowels in the group with the NaOH prototype. In the SureDerm group, 4 out of 7 rats showed only small adhesions at 4 months after operation. Breaking strength of the healed tissue was significantly higher in the NaOH prototype group at 4 months after operation (p < 0.0026). Conclusions: The results indicate that both human acellular dermis products may be used in clinical trials for closure of abdominal wall defects

    Evaluation of a microbiological screening and acceptance procedure for cryopreserved skin allografts based on 14 day cultures

    Get PDF
    Viable donor skin is still considered the gold standard for the temporary covering of burns. Since 1985, the Brussels military skin bank supplies cryopreserved viable cadaveric skin for therapeutic use. Unfortunately, viable skin can not be sterilised, which increases the risk of disease transmission. On the other hand, every effort should be made to ensure that the largest possible part of the donated skin is processed into high-performance grafts. Cryopreserved skin allografts that fail bacterial or fungal screening are reworked into ‘sterile’ non-viable glycerolised skin allografts. The transposition of the European Human Cell and Tissue Directives into Belgian Law has prompted us to install a pragmatic microbiological screening and acceptance procedure, which is based on 14 day enrichment broth cultures of finished product samples and treats the complex issues of ‘acceptable bioburden’ and ‘absence of objectionable organisms’. In this paper we evaluate this procedure applied on 148 skin donations. An incubation time of 14 days allowed for the detection of an additional 16.9% (25/148) of contaminated skin compared to our classic 3 day incubation protocol and consequently increased the share of non-viable glycerolised skin with 8.4%. Importantly, 24% of these slow-growing microorganisms were considered to be potentially pathogenic. In addition, we raise the issue of ‘representative sampling’ of heterogeneously contaminated skin. In summary, we feel that our present microbiological testing and acceptance procedure assures adequate patient safety and skin availability. The question remains, however, whether the supposed increased safety of our skin grafts outweighs the reduced overall clinical performance and the increase in work load and costs

    The role of deoxycytidine-metabolizing enzymes in the cytotoxicity induced by 3′-amino-2′,3′-dideoxycytidine and cytosine arabinoside

    Full text link
    The cellular metabolism of 3′-amino-2′,3′-dideoxycytidine (3′-NH 2 -dCyd), a cytotoxic agent previously reported to be a poor substrate for purified Cyd/dCyd deaminase (dCydD), was compared with that of cytosine arabinoside (ara-C) in cells that displayed dCydD activity (HeLa) and in cells that did not (L1210). Growth inhibition induced by 3′-NH 2 -dCyd was dependent on the levels of anabolic enzymes, particularly dCyd kinase (dCydK), whereas cytotoxicity induced by ara-C was dependent on the expression of both anabolic and catabolic enzyme activities. Competition kinetics using purified enzyme revealed that the binding affinity of ara-C to dCydK was 5-fold that of the amino analog. However, this binding advantage is apparently offset in cells that contain high levels of dCydD, since the K i values for this enzyme were 0.2 and 23 mm for ara-C and 3′-NH 2 -dCyd, respectively. This was reflected in the decrease in analog sensitivity observed between the two cell lines, whereby the concentrations of ara-C and 3′-NH 2 -dCyd required to inhibit growth by 50% were 200 and 7 times higher, respectively, in the dCydD-containing HeLa cells as compared with the dCydD-deficient L1210 cells. The metabolic stability and cytotoxicity of 3′-NH 2 -dCyd was independent of cell number. An unexpected finding was the extent to which the effectiveness of ara-C could be mitigated by the number of dCydD-containing cells. A completely cytotoxic concentration of ara-C was rendered nontoxic by a 10-fold increase in cell number. This observation was supported by an increase in I-β- d -arabinofuranosyluracil (ara-U) formation, a decrease in ara-C 5′-triphosphate (ara-CTP) accumulation, and a rise in cell viability with increasing cell number. These findings indicate that unlike ara-C, the effectiveness of 3′-NH 2 -dCyd is independent of the level of deaminase, which suggests its possible utility in situations in which high levels of deaminase are manifest.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46922/1/280_2004_Article_BF00686406.pd

    Non-Water-Suppressed 1H MR Spectroscopy with Orientational Prior Knowledge Shows Potential for Separating Intra- and Extramyocellular Lipid Signals in Human Myocardium

    Get PDF
    Conditions such as type II diabetes are linked with elevated lipid levels in the heart, and significantly increased risk of heart failure; however, metabolic processes underlying the development of cardiac disease in type II diabetes are not fully understood. Here we present a non-invasive method for in vivo investigation of cardiac lipid metabolism: namely, IVS-McPRESS. This technique uses metabolite-cycled, non-water suppressed 1H cardiac magnetic resonance spectroscopy with prospective and retrospective motion correction. High-quality IVS-McPRESS data acquired from healthy volunteers allowed us to investigate the frequency shift of extramyocellular lipid signals, which depends on the myocardial fibre orientation. Assuming consistent voxel positioning relative to myofibres, the myofibre angle with the magnetic field was derived from the voxel orientation. For separation and individual analysis of intra- and extramyocellular lipid signals, the angle myocardial fibres in the spectroscopy voxel take with the magnetic field should be within ¹24.5°. Metabolite and lipid concentrations were analysed with respect to BMI. Significant correlations between BMI and unsaturated fatty acids in intramyocellular lipids, and methylene groups in extramyocellular lipids were found. The proposed IVS-McPRESS technique enables non-invasive investigation of cardiac lipid metabolism and may thus be a useful tool to study healthy and pathological conditions

    Glycerol treatment as recovery procedure for cryopreserved human skin allografts positive for bacteria and fungi

    Get PDF
    Human donor skin allografts are suitable and much used temporary biological (burn) wound dressings. They prepare the excised wound bed for final autografting and form an excellent substrate for revascularisation and for the formation of granulation tissue. Two preservation methods, glycerol preservation and cryopreservation, are commonly used by tissue banks for the long-term storage of skin grafts. The burn surgeons of the Queen Astrid Military Hospital preferentially use partly viable cryopreserved skin allografts. After mandatory 14-day bacterial and mycological culture, however, approximately 15% of the cryopreserved skin allografts cannot be released from quarantine because of positive culture. To maximize the use of our scarce and precious donor skin, we developed a glycerolisation-based recovery method for these culture positive cryopreserved allografts. The inactivation and preservation method, described in this paper, allowed for an efficient inactivation of the colonising bacteria and fungi, with the exception of spore-formers, and did not influence the structural and functional aspects of the skin allografts

    PAK1 Protein Expression in the Auditory Cortex of Schizophrenia Subjects

    Get PDF
    Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin. These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are present in schizophrenia
    • …
    corecore