1,336 research outputs found

    Screened potential and quarkonia properties at high temperatures

    Get PDF
    We perform a quark model calculation of the quarkonia bb‾b\overline{b} and cc‾c\overline{c} spectra using smooth and sudden string breaking potentials. The screening parameter is scale dependent and can be related to an effective running gluon mass that has a finite infrared fixed point. A temperature dependence for the screening mass is motivated by lattice QCD simulations at finite temperature. Qualitatively different results are obtained for quarkonia properties close to a critical value of the deconfining temperature when a smooth or a sudden string breaking potential is used. In particular, with a sudden string breaking potential quarkonia radii remain almost independent of the temperature up to the critical point, only well above the critical point the radii increase significantly. Such a behavior will impact the phenomenology of quarkonia interactions in medium, in particular for scattering dissociation processes.Comment: 9 pages, 11 figures. Accepted for publication ijn Eur. Phys. J.

    Exact Casimir Interaction Between Semitransparent Spheres and Cylinders

    Full text link
    A multiple scattering formulation is used to calculate the force, arising from fluctuating scalar fields, between distinct bodies described by δ\delta-function potentials, so-called semitransparent bodies. (In the limit of strong coupling, a semitransparent boundary becomes a Dirichlet one.) We obtain expressions for the Casimir energies between disjoint parallel semitransparent cylinders and between disjoint semitransparent spheres. In the limit of weak coupling, we derive power series expansions for the energy, which can be exactly summed, so that explicit, very simple, closed-form expressions are obtained in both cases. The proximity force theorem holds when the objects are almost touching, but is subject to large corrections as the bodies are moved further apart.Comment: 5 pages, 4 eps figures; expanded discussion of previous work and additional references added, minor typos correcte

    Symmetry-preserving contact interaction model for heavy-light mesons

    Full text link
    We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interac- tion model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar pion and Kaon mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals

    Hadronic current correlation functions at finite temperature in the NJL model

    Full text link
    Recently there have been suggestions that for a proper description of hadronic matter and hadronic correlation functions within the NJL model at finite density/temperature the parameters of the model should be taken density/temperature dependent. Here we show that qualitatively similar results can be obtained using a cutoff-independent regularization of the NJL model. In this regularization scheme one can express the divergent parts at finite density/temperature of the amplitudes in terms of their counterparts in vacuum.Comment: Presented at 9th Hadron Physics and 8th Relativistic Aspects of Nuclear Physics (HADRON-RANP 2004): A Joint Meeting on QCD and QGP, Angra dos Reis, Rio de Janeiro, Brazil, 28 Mar - 3 Apr 200

    Inverse spectral problems for Sturm--Liouville operators with matrix-valued potentials

    Full text link
    We give a complete description of the set of spectral data (eigenvalues and specially introduced norming constants) for Sturm--Liouville operators on the interval [0,1][0,1] with matrix-valued potentials in the Sobolev space W2−1W_2^{-1} and suggest an algorithm reconstructing the potential from the spectral data that is based on Krein's accelerant method.Comment: 39 pages, uses iopart.cls, iopams.sty and setstack.sty by IO

    Bounds for mixing time of quantum walks on finite graphs

    Full text link
    Several inequalities are proved for the mixing time of discrete-time quantum walks on finite graphs. The mixing time is defined differently than in Aharonov, Ambainis, Kempe and Vazirani (2001) and it is found that for particular examples of walks on a cycle, a hypercube and a complete graph, quantum walks provide no speed-up in mixing over the classical counterparts. In addition, non-unitary quantum walks (i.e., walks with decoherence) are considered and a criterion for their convergence to the unique stationary distribution is derived.Comment: This is the journal version (except formatting); it is a significant revision of the previous version, in particular, it contains a new result about the convergence of quantum walks with decoherence; 16 page

    Applications of M.G. Krein's Theory of Regular Symmetric Operators to Sampling Theory

    Full text link
    The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem. In this paper we provide a new approach to this subject on the basis of the M. G. Krein's theory of representation of simple regular symmetric operators having deficiency indices (1,1). We show that the resulting sampling formulae have the form of Lagrange interpolation series. We also characterize the space of functions reconstructible by our sampling formulae. Our construction allows a rigorous treatment of certain ideas proposed recently in quantum gravity.Comment: 15 pages; v2: minor changes in abstract, addition of PACS numbers, changes in some keywords, some few changes in the introduction, correction of the proof of the last theorem, and addition of some comments at the end of the fourth sectio

    Chiral corrections to baryon properties with composite pions

    Full text link
    A calculational scheme is developed to evaluate chiral corrections to properties of composite baryons with composite pions. The composite baryons and pions are bound states derived from a microscopic chiral quark model. The model is amenable to standard many-body techniques such as the BCS and RPA formalisms. An effective chiral model involving only hadronic degrees of freedom is derived from the macroscopic quark model by projection onto hadron states. Chiral loops are calculated using the effective hadronic Hamiltonian. A simple microscopic confining interaction is used to illustrate the derivation of the pion-nucleon form factor and the calculation of pionic self-energy corrections to the nucleon and Delta(1232) masses.Comment: 29 pages, Revtex, 4 ps figure
    • …
    corecore