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Abstract. We perform a quark model calculation of the quarkonia bb and cc spectra using smooth and
sudden string breaking potentials. The screening parameter is scale dependent and can be related to
an effective running gluon mass that has a finite infrared fixed point. A temperature dependence for
the screening mass is motivated by lattice QCD simulations at finite temperature. Qualitatively different
results are obtained for quarkonia properties close to a critical value of the deconfining temperature when a
smooth or a sudden string breaking potential is used. In particular, with a sudden string breaking potential
quarkonia radii remain almost independent of the temperature up to the critical point, only well above the
critical point the radii increase significantly. Such a behavior will impact the phenomenology of quarkonia
interactions in medium, in particular for scattering dissociation processes.

PACS. 14.40.Lb Charmed mesons – 12.39.Jh Nonrelativistic quark model – 25.75.Nq Quark deconfine-
ment – 24.85.+p Quarks, gluons, and QCD in nuclear reactions – 13.75.-n Low-energy hadron-hadron
interactions

1 Introduction

The study of hot hadronic matter may yield a particularly
clear picture of the physics of quark confinement [1]. At
high temperatures, color screening may be strong enough
to lead to the dissolution of quark-antiquark states [2].
Because of the large mass of the heavy quarks in charmo-
nium and bottomonium, the velocity of the heavy quarks
is small enough such that the binding effects in quarko-
nia at zero temperature might be understood in terms
of a nonrelativistic potential. Color screening could then
be masked in terms of in-medium modification of the in-
terquark forces.

Nature of the confining potential has been a challenge
for lattice QCD studies. Quenched and unquenched lattice
QCD calculations were able to probe the linear raising po-
tential between heavy color sources [3]. It has been also re-
cently numerically investigated the transition of the static
quark-antiquark string into a static-light meson-antimeson
system, in other words string breaking in QCD [4]. These
studies drove the idea of screening of the color forces at
zero temperature as a consequence of the polarization
of vacuum. This effect observed numerically should be
enhanced in hot hadronic matter with observable conse-
quences.

Recent publications [5,6] have emphasized the use of
a screened potential in place of one linearly rising with
inter-quark distance in a quark-model description of the
hadronic spectrum. In these publications properties of hea-

vy quarkonia (cc̄ and bb̄ bound states) such as masses,
spin-spin splittings, leptonic widths and radiative decays
have been calculated from a simple screened funnel quark
potential model. Although the quality of the calculated
spectra [5] is similar to that of other quark model calcula-
tions [7] that employ nonscreened confinement, important
differences arise. The most salient ones are the finite num-
ber of quark-antiquark bound states and the pattern of en-
ergy differences of the higher excited states. The finiteness
of the bound-state spectrum has interesting implications
in the light-quark sector. In particular, the predicted [6]
number of states is in almost perfect agreement with the
experimentally observed states, a fact that might shed new
light on the so-called missing resonance problem – for a
recent review, see Ref. [8].

Screening of the potential is due to quark-antiquark
creation from the vacuum as the interquark distance is
increased and leads to the breaking of the color string
that would be formed in the absence of sea quarks [3].
Such a string breaking has been confirmed in lattice QCD
calculations [4]. It has also been suggested by the observa-
tion of nonlinear hadronic Regge trajectories [9]. A quite
rapid crossover from a linear rising to a flat potential is
well established in SU(2) Yang-Mills theories [10]. In addi-
tion, the mentioned recent lattice QCD calculations have
also shown that the breaking is quite sudden, the QQ̄ po-
tential saturates sharply for a breaking distance of the
order of 1.25 fm corresponding to a saturation energy of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/71031521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/0902.3570v1


2 J. Vijande et al.: Screened potential and quarkonia properties above the deconfinement transition

about twice the B−meson (Qq̄) mass, indicating that the
formation of two heavy-light subsystems (B, B̄) is ener-
getically favored. This information has been implemented
in a quark model scheme [11] showing that, as a con-
sequence of coupled channels above the physical thresh-
olds (corresponding to the opening of decay channels),
the description becomes progressively less accurate high
in the spectrum. Moreover, the mixing with the contin-
uum can also modify the short-range part of the interac-
tion. Nonetheless, an effective (renormalized) nonscreened
potential continues being useful up to energies not too far
above the lowest physical threshold. At sufficiently high
baryon densities and/or temperatures, one would expect
that such a screening would be even stronger.

However, recent results of lattice QCD simulations of
charmonium correlation functions at finite temperature
have shown some rather unexpected results [12,13,14].
The spectral functions in some channels display narrow
peaks at temperatures T well above the deconfinement
temperature Tc. Peaks in these mesonic correlation func-
tions indicate that the quark and the antiquark are strongly
correlated, leading to the interpretation that bound states
of the heavy charm quarks can possibly survive above
the deconfinement temperature. The results came to a
surprise since early expectations [1] were that cc̄ bound
states (like the J/Ψ) would dissolve already at tempera-
tures close to Tc.

These lattice results have stirred renewed interest [15,
16,17,18,19,20] in incorporating finite temperature effects
in a potential model. There is a long history [21] on the
use of temperature-dependent potentials in a Schrödinger
equation to study quarkonium properties at finite temper-
atures and the tlattice results have brought new physical
insight into the problem. Recent studies have attempted
to incorporate this insight into the phenomenology of the
modified potentials. Within these approaches a tempera-
ture dependence for the potential is extracted from lattice
results for the finite temperature free energy of a static
quark-antiquark pair. A problem with such an strategy is
that the free-energy is not itself a potential energy since
it contains an entropy contribution. One consequence of
such a parametrization of the binding potential is that
entropy smooths out any sudden breaking of the string.
This in turn has the effect that quarkonia properties close
to the critical temperature have a smooth temperature
dependence.

Although at the moment such a finite temperature
quark model, contrary to the zero temperature case, can-
not be justified as some limiting approximation that fol-
lows from a systematic effective field theory, it does seem
to provide a simple phenomenological attempt to bring
insight into the problem. At zero temperature, potential
models for quarkonia can be derived in QCD from first
principles as the leading order approximation of an effec-
tive field theory known as potential nonrelativistic QCD [3,
22]. A finite temperature generalization of this approach
has been attempted only very recently [23], but no string
breaking is accessible in such an approach. Work on simi-
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Fig. 1. Smooth and sudden potentials for charmonium (upper
panel) and bottomonium (lower panel) pseudoscalar S wave
states. In all cases the value of the corresponding constituent
quark masses (2mc or 2mb) has been added.

lar grounds to obtain a finite temperature potential to be
used in a Schrödinger equation was done in Ref. [24]

The purpose of the present paper is to show that one
obtains qualitatively different behavior of quarkonia prop-
erties close to the critical temperature when a sudden
string-breaking potential is used. In particular, the radius
of a quarkonium bound state remains almost independent
of the temperature up to the critical temperature, when
starts to increase abruptly. Such a behavior will impact
the phenomenology of quarkonia interactions in medium,
in particular for scattering dissociation processes [25,26,
27,28], a topic very important for the experimental pro-
grams of heavy-ion collisions like the experiments at the
FAIR facility at the GSI laboratory in Germany, in par-
ticular for the CBM experiment [29].

The paper is organized as follows. In the next section
we discuss the models incorporating smooth and sudden
breaking at zero and finite temperature and we present
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Table 1. T = 0 parameters.

Smooth Sudden

σ (MeV fm−1) 1470 800
µ (fm−1) 0.71 −

1/rb (fm−1) − 0.44
α (MeV fm) 96 106

r0 (fm) 0.38 0.36
mc (MeV) 1264 1385
mb (MeV) 4724 4820

our numerical results. A model for the temperature de-
pendence of the screening parameters is discussed in Sec-
tion 3. Conclusions and Perspectives are summarized in
Section 4.

2 Smooth versus sudden string breaking

Our approach in the present paper will be purely phe-
nomenological. Initially, for the purposes of investigating
the consequences of sudden string breaking at finite tem-
peratures it is not necessary to adopt any specific model
for the temperature dependence of screening parameters.
We will calculate the spectrum of charmonium and bot-
tomonium using two different potentials, one with smooth
string breaking and another with sudden string breaking.
We then vary the screening parameters and investigate
its effect over the energies, radii and decay constants.
In the next section we will discuss possible relations of
our phenomenological approach to different models that
parametrize the temperature dependence of the screening
parameters. This will allow us to relate changes of the
observables with temperature.

We implement smooth string breaking in the potential
as

Vsmooth(r) =
σ

µ

(

1 − e−µr
)

+ VOGE(r), (1)

where VOGE(r) is the one-gluon exchange (OGE) potential
given by

VOGE(r) = −
α

r
+ α

~
2

mqmq̄

e−r/r0

rr20
(σ1 · σ2) . (2)

Here σ and α are phenomenological parameters to be fixed
by fitting the quarkonium spectrum, and the delta func-
tion of the OGE spin-spin part has been smoothed out
with a parameter r0. The asymptotic limit r → ∞ of the
potential is a constant, given by

Vsmooth(r → ∞) =
σ

µ
. (3)

Sudden string breaking is implemented as

Vsudden(r) =

{

σ r + VOGE(r), r < rb

σrb + VOGE(rb), r ≥ rb .
(4)

Table 2. cc bound state masses (in MeV) with smooth and
sudden string breaking at T = 0 up to four radial excitations.
Experimental masses taken from the PDG [32].

State (nL2S+1) Msmooth Msudden Mexp

1S1 2979 2976 2979.8 ± 1.2
1S3 3099 3096 3096.916 ± 0.011
1P1 3491 3453 3525.93 ± 0.27
1P3 3521 3482 3493.87
2S1 3639 3600 3637 ± 4
2S3 3686 3654 3686.093 ± 0.034
1D1 3790 3745
1D3 3801 3757 3772.4 ± 1.1
2P1 3907 3897
2P3 3923 3917 3929 ± 5
3S1 4008 4028
3S3 4035 4067 4039 ± 1
2D1 4098 4128
2D3 4105 4138 4153 ± 3
3P1 4178 4266
3P3 4189 4282
4S1 4248 4384
4S3 4265 4413 4421 ± 4
3D1 4307 4458
3D3 4312 4467
4P1 4361 −
4P3 4368 −

The asymptotic limiting value of this potential is spin(S)-
dependent and it is given by

Vsudden(r → ∞) = σrb −
α

rb

+ [S(S + 1)]α
~

2

mqmq̄

e−rb/r0

r20rb
. (5)

We adjust parameters to obtain a reasonable descrip-
tion of the lowest states. Although they are effective pa-
rameters they are not unphysical, see Ref. [30] for a de-
tailed discussion of their value. Their values are given in
Table 1 (we refer to these as the T = 0 parameters). In
Fig. 1 we plot the potentials for the S wave pseudoscalar
(spin equal to zero) states of charmonium and bottomo-
nium. The differences between the smooth and sudden
string-breaking potentials are concentrated in the region
of r ≃ 2 fm. We have solved the Schrödinger equation for
the above potentials for charmonium and bottomonium
using standard Numerov techniques [31]. Our results, to-
gether with the available experimental values taken from
the PDG [32] are shown in Tables 2 and 3. Many of the
experimental results shown in the tables have no definite
assignment of orbital angular momentum. Therefore, we
have identified the states guided by the results of our
model. As a general trend, one sees that the higher or-
bital excitations are better described by a sudden breaking
potential. This important result, already observed in the
baryon spectra [6], imply that these states are very sen-
sitive to the form of the confining potential and as such
they will be an ideal benchmark to provide clues on the
nature of the screening behavior of the potential.
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Table 3. bb bound state masses (in MeV) with smooth and
sudden string breaking at T = 0 up to six radial excitations.
Experimental masses taken from the PDG [32].

State (nL2S+1) Msmooth Msudden Mexp

1S1 9434 9432
1S3 9459 9463 9460.30 ± 0.26
1P1 9951 9929
1P3 9958 9936 9888.1
2S1 10059 10012
2S3 10068 10022 10023.26 ± 0.31
1D1 10218 10167
1D3 10221 10171 10161.1 ± 1.7
2P1 10320 10263
2P3 10324 10267 10252.2
3S1 10404 10339
3S3 10409 10345 10355.2 ± 0.5
2D1 10502 10441
2D3 10505 10443
3P1 10583 10528
3P3 10586 10531
4S1 10651 10599
4S3 10655 10604 10579.4 ± 1.2
3D1 10721 10677
3D3 10722 10678
4P1 10787 10758
4P3 10789 10760
5S1 10843 10825
5S3 10846 10829 10865 ± 8
4D1 10895 10889
4D3 10896 10891
5P1 10949 10966
5P3 10951 10968
6S3 10998 11034 11019 ± 8

Next we keep all parameters fixed and vary the screen-
ing parameters µ and 1/rb so to mimic a temperature de-
pendence. Here we do not use a specific model for the
temperature dependence of these parameters, this will be
discussed in the following section. Results for the total
energy E and r.m.s. radius

√

〈r2〉 of the lowest S and
P wave states of charmonium as functions of the smooth
(µ) and sudden (1/rb) screening parameters are shown re-
spectively in Figs. 2 and 3. The corresponding results for
bottomonium are shown Figs. 4 and 5. In Tables 4 and
5 the results corresponding to the sudden potential are
presented together with the threshold energies Eth and
wavefunctions at the origin φ(0).

The results are quite striking. The observables calcu-
lated with a smooth screening or with sudden screening
behave dramatically different as the corresponding screen-
ing parameters are varied. While the observables calcu-
lated with smooth screening vary continuously as µ is in-
creased, the observables calculated with sudden screening
change very little as 1/rb increases, until a critical value
of this parameter is reached when they change abruptly.
Such an abrupt change on observables at a critical value of
1/rb naturally leads to the interpretation of a phase tran-
sition, the deconfinement transition. Of course, related to
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Fig. 2. ηc (solid), J/Ψ (dashed) and χcJ (dashed-dotted) en-
ergies as a function of the smooth µ (upper panel) and sudden
1/rb (lower panel) screening parameters. The dashed–triple-
dotted curve shows the threshold energies of these states.

this critical value of 1/rb there should be a critical tem-
perature Tc.

As mentioned in the introduction, an abrupt increase
of the size of the meson wave functions will impact the
phenomenology of quarkonia interactions in medium, in
particular for scattering dissociation processes [25,26,27,
28,29]. In a quark model description, such dissociation
cross sections depend upon the degree of overlap of the
wave functions of the hadrons and so depend crucially on
the size of the wave functions in coordinate space. The
diagram shown in Fig. 6 illustrates such a process for the
case of a meson-meson process. The figure illustrates a
process in which two mesons m1 and m2 collide and give
in general two different mesons m3 and m4. The basic
mechanism here is quark-gluon interchange in which the
two quarks, one from each of the colliding mesons, are in-
terchanged with each other leading to a final state that is
different from the initial one. A typical and very impor-
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Table 4. Values of the threshold Eth and total E energies, in MeV, r.m.s. radius
p

〈r2〉, in fm, and wavefunction at the origin

φ(0), in fm−3/2, of the lowest charmonium S and P wave states for different values of the sudden screening parameter 1/rb, in
fm−1.

ηc J/Ψ χcJ

1/rb Eth E
p

〈r2〉 φ(0) Eth E
p

〈r2〉 φ(0) Eth E
p

〈r2〉 φ(0)
0.44 4523 2976.0 0.4066 13.328 4523 3096.4 0.4596 9.486 4534 3482.6 0.7126 0
0.48 4399 2976.0 0.4066 13.328 4399 3096.4 0.4596 9.486 4412 3482.6 0.7126 0
0.53 4234 2976.0 0.4066 13.328 4234 3096.4 0.4596 9.486 4250 3482.6 0.7126 0
0.59 4067 2976.0 0.4066 13.328 4068 3096.4 0.4596 9.486 4087 3482.6 0.7129 0
0.67 3899 2976.0 0.4066 13.328 3900 3096.4 0.4597 9.486 3924 3482.4 0.7145 0
0.77 3727 2975.8 0.4067 13.328 3729 3096.3 0.4600 9.484 3762 3481.1 0.7235 0
0.91 3552 2975.7 0.4076 13.320 3554 3096.0 0.4624 9.468 3600 3473.1 0.7773 0
1.00 3461 2975.4 0.4093 13.305 3465 3095.3 0.4664 9.439 3521 3461.4 0.8892 0
1.11 3368 2974.6 0.4132 13.262 3374 3093.5 0.4759 9.363 3443 3432.1 1.4710 0
1.25 3271 2972.4 0.4230 13.151 3280 3088.9 0.4998 9.170 Melted
1.43 3168 2966.5 0.4483 12.856 3182 3077.0 0.5661 8.669 Melted
1.67 3058 2950.6 0.5207 12.070 3078 3046.3 0.8268 7.260 Melted
2.00 2933 2906.7 0.8556 9.633 Melted Melted
2.50 Melted Melted Melted

Table 5. Values of the threshold Eth and total E energies, in MeV, r.m.s. radius
p

〈r2〉, in fm, and wavefunction at the origin

φ(0), in fm−3/2, of the lowest bottomonium S and P wave states for different values of the sudden screening parameter 1/rb, in
fm−1.

ηb Υ (1S) χbJ

1/rb Eth E
p

〈r2〉 φ(0) Eth E
p

〈r2〉 φ(0) Eth E
p

〈r2〉 φ(0)
0.44 11392 9432.2 0.2077 41.530 11393 9462.8 0.2136 39.271 11396 9936.0 0.4095 0
0.48 11269 9432.2 0.2077 41.530 11270 9462.8 0.2136 39.271 11273 9936.0 0.4095 0
0.53 11104 9432.2 0.2077 41.530 11104 9462.8 0.2136 39.271 11109 9936.0 0.4095 0
0.67 10769 9432.2 0.2077 41.530 10769 9462.8 0.2136 39.271 10776 9936.0 0.4095 0
0.91 10423 9432.2 0.2077 41.530 10424 9462.8 0.2136 39.271 10437 9936.0 0.4096 0
1.11 10242 9432.2 0.2077 41.530 10242 9462.8 0.2136 39.271 10262 9935.9 0.4105 0
1.43 10048 9432.2 0.2078 41.528 10049 9462.8 0.2137 39.266 10082 9933.3 0.4265 0
1.67 9942 9432.1 0.2081 41.513 9944 9462.7 0.2141 39.250 9989 9924.6 0.4810 0
1.82 9886 9432.0 0.2086 41.487 9888 9462.5 0.2147 39.250 9941 9912.9 0.5859 0
2.00 9826 9431.6 0.2098 41.423 9829 9462.1 0.2162 39.145 Melted
2.50 9692 9428.6 0.2181 40.922 9696 9458.5 0.2263 38.566 Melted
3.33 9521 9408.8 0.2634 38.059 9529 9436.5 0.2829 35.318 Melted
4.00 9408 9370.8 0.3893 32.075 9419 9393.3 0.4590 28.454 Melted
4.26 9368 9348.6 0.5144 28.194 Melted Melted
5.00 Melted Melted Melted

tant example is the process J/Ψ + π → DD̄∗. It is clear
that the constituent interchange will only happen when
there is significant overlap between the wave functions of
two mesons. The same quark-gluon interchange mecha-
nism is also present in elastic hadron-hadron scattering
and has been used in recent publications to describe the
short-range part of several different processes [28,33]. As
in dissociation processes, the elastic processes are also very
sensitive to the sizes of the wave functions of the colliding
hadrons.

In order to illustrate the effect of an abrupt increase
of the size of the wave functions on a cross section, let us
consider quark-gluon interchange in elastic meson-meson
scattering. To evaluate the cross-section, we use the quark-
Born-diagram method [34,35], which provides a good ap-
proximation [25] to a more complete resonating group

method or Born-Oppenheimer calculation [36]. There are
several diagrams that contribute to this process, being
that shown in Fig. 6 a representative one. The evalua-
tion of such graphs requires the quark-gluon interaction
and the hadron wave functions. The calculation of these
diagrams can be carried out analytically when one uses
Gaussian forms for the hadron wave functions and a con-
tact interaction for the quark-quark interaction (the wavy
line in Fig. 6). To set the notation, let the internal meson
wave functions ψ(r) be given as (for equal quark masses)

ψ(r) =

(

1

2π

)3/2
(π

λ

)3/4

e−r2/8λ, (6)

so that the r.m.s. radius of the meson is given by 〈r2〉 =
6λ. In general, as the c.m. total energy of the meson-
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Fig. 3. ηc (solid), J/Ψ (dashed) and χcJ (dashed-dotted) r.m.s.
as a function of the smooth µ (upper panel) and sudden 1/rb

(lower panel) screening parameters.

meson system s is increased, most of the Born elastic cross
section decreases very rapidly and leaves a constant cross
section at high energies, when s ≫ 1/λ – see discussions
in Ref. [34]. Specifically, the behavior of the cross section
at large s is given by

lim
s≫1/λ

σ ∼
1

λ
∼

1

〈r2〉
. (7)

On the other hand, at low momentum transfers t such that
t/s is small, the differential cross section behaves as

lim
t/s≪1

dσ

dt
∼

1

λ
eλt. (8)

Although these results are for the case when all meson
wave functions have the same size λ, they are of general
validity. The final expression would be more complicated
when meson wave functions of different sizes are used, but
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Fig. 4. ηb (solid), Υ (1S) (dashed) and χbJ (dashed-dotted) en-
ergies as a function of the smooth µ (upper panel) and sudden
1/rb (lower panel) screening parameters. The dashed–triple-
dotted curve shows the threshold energies of these states.

the behavior of the above cross section would be qualita-
tively the same, in that they decrease when the size of any
of the meson wave functions increases.

From Eqs. (7) and (8) it is evident the role played by
the size of the meson wave functions. When the size of the
wave functions increase abruptly as the confining string
breaks, the high energy cross sections that involve con-
stituent interchange will change abruptly. As the critical
point is crossed, the model discussed here predicts that
the cross sections involving charmonium can decrease by
a factor of five before the hadrons melt. For bottomonium
the decrease is a factor of two.

The physical reason for the decrease of the cross sec-
tions is of course due to the fact that the hadron wave
functions flatten out as their size parameters increase,
since they are normalized. As the hadron wave functions
flatten out, the overlap of the wave functions of the collid-
ing hadrons is less significative and as such the probability
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Fig. 5. ηb (solid), Υ (1S) (dash) and χbJ (dash-dot) r.m.s. as a
function of the smooth µ (upper panel) and sudden 1/rb (lower
panel) screening parameters.

of constituent interchange is smaller. This effect is similar
to the decrease of the electroweak decay constants as the
size parameter increases. Since the decay constants are
proportional to the wave function at the origin φ(0), they
will decrease because φ(0) decreases as the extension of
the wave function increases – see Tables 4 and 5.

3 A model for the temperature dependence

of screening parameters

A phenomenological relation between the sreening param-
eters, µ in Eq. (1) or rb in Eq. (4), with temperature can be
made within the approach of Ref. [5], where the screening
parameter is connected to an effective gluon mass scale in
the infrared. Although a particular framework will be used
to substantiate this, we trust that it might be of general
validity. Suppose initially that the heavy-quark potential
in coordinate space is defined as the Fourier transform

m1 m2

m3 m4

Fig. 6. Pictorial representation of the constituent interchange
mechanism in meson-meson scattering.

of the static one-gluon-exchange with a running coupling
constant αs(Q

2). For the sake of argument, let us sup-
pose [5] that αs(Q

2) is given by the form derived in QCD
by Cornwall long ago [37], namely

αs(Q
2) =

4π

β0 ln
[

(Q2 + 4M2
g (Q2))/Λ2

] , (9)

where β0 = (33−2nf)/3, nf is the number of quark flavors
with masses much smaller than Q, Λ ∼ 300 MeV is the
QCD scale parameter, and Mg(Q

2) is an effective running
gluon mass given by

M2
g (Q2) = m2

g

(

ln
[

(Q2 + 4m2
g)/Λ

2
]

ln
(

4m2
g/Λ

2
)

)−12/11

, (10)

with mg being a constant mass scale and is responsible
for the existence of confinement. One has that αs(Q

2)
runs from 0 in the ultraviolet asymptotic freedom limit
Q2 → ∞, to α(0) = 4π/β0 ln(4m2

g/Λ
2) in the deep in-

frared limit of Q2 → 0. Now, for M2
g (Q2) ∼ Λ2 one ob-

tains a linearly-rising potential in coordinate space, since
in this limit αs(Q

2) → 1/Q2. Strictly speaking this oc-
curs for the precise value M2(Q2) = Λ2/4, otherwise the
potential is not exactly linear, but still absolutely confin-
ing. Therefore, the potential one gets is of Coulomb type
at short distances (modified by asymptotic freedom) and
confining at long distances. Obviously, both short- and
long-distance components of this potential do not con-
tain the effects of screening. However, screening can be
modeled by modifying the potential so that its long dis-
tance component saturates at a distance 1/µ, where µ is
a screening mass. Screening goes away for µ = 0 and the
purely confining potential with Mg ∼ Λ is recovered. In
view of the interplay between µ and Mg it is natural to
propose [5],

µ = Λ−Mg . (11)
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These effects were parametrized in exploratory lattice stud-
ies by a screened funnel potential [38]. Although this para-
metrization does not reproduce the rapid turnover around
1 fm from linearly rising to flat potential suggested by
modern lattice results [39], we will follow it for the sake
of simplicity. For a meson the above reasoning would give
rise to a confining static potential of the form

Vconf (r) =
σ

µ
− σr

e−µr

µr
=
σ

µ
− σr

[

e−(Λ−Mg(Q2

0
))r

(Λ−Mg(Q2
0))r

]

(12)
where Q0 is the running scale of µ. In this equation the
relation between µ and Mg has been made explicit. This
identification establishes a deep connection between the
saturation of the coupling constant and the interquark
pair creation mechanism both effects governed byMg(Q

2
0).

Therefore µ runs with Q2
0 so that 0 ≃ µ(Q2

0 = 0) ≤
µ(Q2

0) ≤ µ(Q2
0 → ∞) ≃ 1.52 fm−1. In this approach, finite

temperature effects can be introduced in the potential by
making the effective running gluon mass temperature de-
pendent, in such a way that for large temperatures confine-
ment would disappear. This would imply M2

g (Q2
0, T ) must

decrease with temperature for a fixed value of Q2
0. Thus,

the temperature dependence translates into the screening
parameter through Eq. (11), that could now be written as

µ(Q2
0, T ) = Λ−Mg(Q

2
0, T ) (13)

giving rise to a screening parameter µ increasing with tem-
perature. Assuming that the scale dependence of Mg at fi-
nite temperature is still similar to Eq. (10) and making use
of Eq. (13), one can obtain the temperature dependence of
the screening parameter. Finally, making use of the typi-
cal momentum of charmonium that could be assimilated
to its reduced mass, one can then obtain µ(Q2

c , T ) = µc(T )
appropriate for charmonium. Similar conclusions were ob-
tained in Refs. [21,40]. In particular, Ref. [40] assumed a
linear dependence of µ on T as obtained in first lattice
estimates of screening in high temperature SU(N) gauge
theory.

The above reasoning could be repeated for a rapid
turnover transition potential as that of Eq. (4) obtain-
ing the same conclusions. Admittedly this is a very crude
way to obtain the temperature dependence of the gluon
mass scale, it does seem to make physical sense, in view of
the expectation that confinement goes away at sufficiently
high temperatures.

4 Conclusions and outlook

To summarize, we have performed a detailed quark model
calculation of the bb and cc sectors at zero and finite tem-
perature comparing results obtained using smooth and
sudden string breaking potentials. The scale- and tempera-
ture-dependence of the screening parameters µ and 1/rb
has been discussed. Such a dependence has been moti-
vated by lattice QCD simulations at finite temperature.
The properties of quarkonia close to the critical deconfin-
ing temperature depend strongly on the choice made for

the screening, sudden or smooth. When a sudden string
breaking potential is preferred, mesons are unaffected by
the temperature increase up to the vicinity of the critical
temperature Tc. Once this temperature is exceeded the
radii increases suddenly and the energies and wave func-
tions close to the origin drop. As opposed to this, when a
smooth screening potential is considered meson properties
respond to any modification in the temperature in a con-
tinuous way, and therefore reacting even to small changes
of the temperature. Such a different behavior will modify
drastically the phenomenology of quarkonia interactions
in medium, in particular for scattering dissociation pro-
cesses. Heavy-ion collision experiments, like FAIR at GSI,
are ideally suited to discriminate between both possibil-
ities and therefore to provide an important ingredient in
order to clearly specify the long range (≈2 fm) structure
of confinement.
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