10,249 research outputs found

    Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order

    Full text link
    We introduce new semilocal two-nucleon potentials up to fifth order in the chiral expansion. We employ a simple regularization approach for the pion-exchange contributions which (i) maintains the long-range part of the interaction, (ii) is implemented in momentum space and (iii) can be straightforwardly applied to regularize many-body forces and current operators. We discuss in detail the two-nucleon contact interactions at fourth order and demonstrate that three terms out of fifteen used in previous calculations can be eliminated via suitably chosen unitary transformations. The removal of the redundant contact terms results in a drastic simplification of the fits to scattering data and leads to interactions which are much softer (i.e. more perturbative) than our recent semilocal coordinate-space regularized potentials. Using the pion-nucleon low-energy constants from matching pion-nucleon Roy-Steiner equations to chiral perturbation theory, we perform a comprehensive analysis of nucleon-nucleon scattering and the deuteron properties up to fifth chiral order and study the impact of the leading F-wave two-nucleon contact interactions which appear at sixth order. The resulting chiral potentials lead to an outstanding description of the proton-proton and neutron-proton scattering data from the self-consistent Granada-2013 database below the pion production threshold, which is significantly better than for any other chiral potential. For the first time, the chiral potentials match in precision and even outperform the available high-precision phenomenological potentials, while the number of adjustable parameters is, at the same time, reduced by about ~40%. Last but not least, we perform a detailed error analysis and, in particular, quantify for the first time the statistical uncertainties of the fourth- and the considered sixth-order contact interactions.Comment: 57 pages, 17 figures, 19 table

    Precision nucleon-nucleon potential at fifth order in the chiral expansion

    Get PDF
    We present a nucleon-nucleon potential at fifth order in chiral effective field theory. We find a substantial improvement in the description of nucleon-nucleon phase shifts as compared to the fourth-order results of Ref. [E. Epelbaum, H. Krebs, U.-G. Mei{\ss}ner, arXiv:1412.0142 [nucl-th]]. This provides clear evidence of the corresponding two-pion exchange contributions with all low-energy constants being determined from pion-nucleon scattering. The fifth-order corrections to nucleon-nucleon observables appear to be of a natural size which confirms the good convergence of the chiral expansion for nuclear forces. Furthermore, the obtained results provide strong support for the novel way of quantifying the theoretical uncertainty due to the truncation of the chiral expansion proposed in Ref. [E. Epelbaum, H. Krebs, U.-G. Mei{\ss}ner, arXiv:1412.0142 [nucl-th]]. Our work opens up new perspectives for precision ab initio calculations in few- and many-nucleon systems and is especially relevant for ongoing efforts towards a quantitative understanding the structure of the three-nucleon force in the framework of chiral effective field theory.Comment: 5 pages, 4 figures, 3 table

    Nuclear axial current operators to fourth order in chiral effective field theory

    Full text link
    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.Comment: 72 pages, 21 figures, 3 table

    Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order

    Get PDF
    We present improved nucleon-nucleon potentials derived in chiral effective field theory up to next-to-next-to-next-to-leading order. We argue that the nonlocal momentum-space regulator employed in the two-nucleon potentials of Refs. [E. Epelbaum, W. Gloeckle, U.-G. Mei{\ss}ner, Nucl. Phys. A747 (2005) 362], [D.R. Entem, R. Machleidt, Phys. Rev. C68 (2003) 041001] is not the most efficient choice, in particular since it affects the long-range part of the interaction. We are able to significantly reduce finite-cutoff artefacts by using an appropriate regularization in coordinate space which maintains the analytic structure of the amplitude. The new potentials do not require the additional spectral function regularization employed in Ref. [E. Epelbaum, W. Gloeckle, U.-G. Mei{\ss}ner, Nucl. Phys. A747 (2005) 362] to cut off the short-range components of the two-pion exchange and make use of the low-energy constants c_i and d_i determined from pion-nucleon scattering without any fine tuning. We discuss in detail the construction of the new potentials and convergence of the chiral expansion for two-nucleon observables. We also introduce a new procedure for estimating the theoretical uncertainty from the truncation of the chiral expansion that replaces previous reliance on cutoff variation.Comment: 34 pages, 13 figures, 7 table

    Near threshold neutral pion electroproduction on deuterium in chiral perturbation theory

    Get PDF
    Near threshold neutral pion electroproduction on the deuteron is studied in the framework of baryon chiral perturbation theory at next-to-leading order in the chiral expansion. We develop the multipole decomposition for pion production off spin-1 particles appropriate for the threshold region. The existing data at photon virtuality k^2 = -0.1 GeV^2 can be described satisfactorily. Furthermore, the prediction for the S-wave multipole E_d at the photon point is in good agreement with the data.Comment: 27 pp, 15 fig

    Test instrumentation evaluates electrostatic hazards in fluid system

    Get PDF
    RJ-1 fuel surface potential is measured with a probe to determine the degree of hazard originating from static electricity buildup in the hydraulic fluid. The probe is mounted in contact with the fluid surface and connected to an electrostatic voltmeter

    Complex Behavior in Simple Models of Biological Coevolution

    Full text link
    We explore the complex dynamical behavior of simple predator-prey models of biological coevolution that account for interspecific and intraspecific competition for resources, as well as adaptive foraging behavior. In long kinetic Monte Carlo simulations of these models we find quite robust 1/f-like noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of quiet periods of relative evolutionary stasis. In one model, based on the Holling Type II functional response, adaptive foraging produces a metastable low-diversity phase and a stable high-diversity phase.Comment: 8 pages, 5 figure

    ENSO suppression due to weakening of the North Atlantic thermohaline circulation

    Get PDF
    Changes of the North Atlantic thermohaline circulation (THC) excite wave patterns that readjust the thermocline globally. This paper examines the impact of a freshwater-induced THC shutdown on the depth of the Pacific thermocline and its subsequent modification of the El Niño–Southern Oscillation (ENSO) variability using an intermediate-complexity global coupled atmosphere–ocean–sea ice model and an intermediate ENSO model, respectively. It is shown by performing a numerical eigenanalysis and transient simulations that a THC shutdown in the North Atlantic goes along with reduced ENSO variability because of a deepening of the zonal mean tropical Pacific thermocline. A transient simulation also exhibits abrupt changes of ENSO behavior, depending on the rate of THC change. The global oceanic wave adjustment mechanism is shown to play a key role also on multidecadal time scales. Simulated multidecadal global sea surface temperature (SST) patterns show a large degree of similarity with previous climate reconstructions, suggesting that the observed pan-oceanic variability on these time scales is brought about by oceanic waves and by atmospheric teleconnections
    corecore