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We present improved nucleon-nucleon potentials derived in chiral effective field theory up to next-
to-next-to-next-to-leading order. We argue that the nonlocal momentum-space regulator employed
in the two-nucleon potentials of Refs. [1, 2] is not the most efficient choice, in particular since
it affects the long-range part of the interaction. We are able to significantly reduce finite-cutoff
artefacts by using an appropriate regularization in coordinate space which maintains the analytic
structure of the amplitude. The new potentials do not require the additional spectral function
regularization employed in Ref. [1] to cut off the short-range components of the two-pion exchange
and make use of the low-energy constants ci and di determined from pion-nucleon scattering without
any fine tuning. We discuss in detail the construction of the new potentials and convergence of the
chiral expansion for two-nucleon observables. We also introduce a new procedure for estimating the
theoretical uncertainty from the truncation of the chiral expansion that replaces previous reliance
on cutoff variation.

PACS numbers: 13.75.Cs,21.30.-x

I. INTRODUCTION

In the past decade, we have witnessed impressive progress in the field of low-energy nuclear physics which is, to a large
extent, related to exciting theoretical developments. On the one hand, rapidly increasing computational resources
and improvements in algorithms make selected nuclear physics observables amenable to numerical simulations in
lattice QCD, see Ref. [3] for a review article. On the other hand, considerable progress has been achieved towards
a quantitative description of nuclear forces within the framework of chiral effective field theory (EFT) initiated
in the pioneering work of Weinberg [4]. This approach has been used to derive nuclear forces, defined as kernels
of the corresponding dynamical equations, order-by-order within the EFT expansion, see Refs. [5, 6] for the first
quantitative studies along these lines. The resulting scheme, based on solving the nuclear A-body problem in a
Hamiltonian framework with interactions between nucleons tied to QCD via its symmetries, has been developed into
a major research field in computational few- and many-body physics and provides nowadays a commonly accepted
approach to ab-initio studies of nuclear structure and reactions [7, 8]. In addition to offering a natural explanation for
the observed hierarchy of many-body forces, V2N � V3N � V4N . . ., and allowing for the estimation of the theoretical
uncertainty, it is expected to shed light on the long-standing three-nucleon force (3NF) problem, an old but still very
current topic in nuclear physics [9, 10]. While effects of 3NFs in low-energy nuclear observables are expected to be
smaller than the ones of the nucleon-nucleon (NN) force, their inclusion is mandatory at the level of accuracy of
todays few- and many-body ab-initio calculations. However, in spite of decades of effort, the structure of the 3NF is
not properly described by the available phenomenological models [9]. Given the very rich spin-momentum structure
of the 3NF [11–13], scarcer database for nucleon-deuteron scattering as compared to the NN system and relatively
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high computational cost of solving the Faddeev equations, further progress in this fields requires substantial input
from theory. This provides a strong motivation to study the 3NF within chiral EFT, and this topic is recognized as an
important frontier in the field [8, 14, 15]. In particular, the recently formed Low Energy Nuclear Physics International
Collaboration (LENPIC) [16] intends to carry out detailed ab-initio calculations of few- and many-nucleon systems
in order to study effects of the 3NF complete through fourth order in the chiral expansion, i.e. next-to-next-to-next-
to-leading order (N3LO).

Clearly, looking for fine details of the 3NF, which itself is expected to provide a small correction to the dominant NN
force, requires that the NN interaction is known with a sufficiently high accuracy and that one is able to carry out
reliable estimation of the theoretical uncertainty. While accurate N3LO NN potentials have been available since ten
years [1, 2], there are certain issues which might become relevant at the accuracy level of the ongoing and planned
calculations. First of all, the potentials of Ref. [1] employ an additional spectral function regularization (SFR)
[17, 18] in order to suppress an unphysically strong attraction caused by the very strong short-range components
of the subleading two-pion exchange. On the other hand, the available calculations of the 3NF at and beyond the
N3LO level employ the standard dimensional regularization. Introducing the additional SFR on some of the 3NF
contributions such as, for example, the so-called ring diagrams, appears to be a nontrivial task. Notice that the
potential of Ref. [2] avoids the usage of the SFR, but probably at the cost of allowing for a variable functional form
of the regulator function for different terms in the interaction, see Table F.2 in Ref. [19]. Another issue concerns the
adopted values of certain pion-nucleon (πN) low-energy constants (LECs) such as especially the ci’s, which accompany
the subleading vertices in the πN effective Lagrangian. These LECs govern the strength of the two-pion exchange
NN potential and of the long- and intermediate-range 3NFs and should be taken consistently with the πN system. It
is well known that some of these LECs and, especially, the LEC c3 receive significant contributions associated with
the intermediate ∆ excitation of the nucleon and appear to be numerically large [20]. It was found in Ref. [1] that
the large empirical values of c3 would result in generating unphysical deeply bound states in the NN system, so that
a reduced value for this LEC has been used in the N3LO potential of Ref. [1]. In the N3LO potential of Ref. [2],
the LECs c2,3,4 were actually tuned to improve the quality of the fit which resulted, in particular, in the value of
c4 incompatible with the available determinations from the πN system. Perhaps most importantly, the theoretical
uncertainty of the calculations due to truncation of the chiral expansion at a given order was so far at best estimated
by means of a residual cutoff dependence. As will be argued below, such an approach does not allow for a reliable
quantification of the theoretical accuracy.

All these issues clearly call for taking a fresh look at the NN system in chiral EFT. In this work, we introduce a
new generation of the chiral N3LO NN potentials which make use of a local regularization of the pion-exchange
contributions. The resulting potentials provide an excellent description of low-energy NN scattering observables and
the deuteron properties and resolve all the issues mentioned above. In addition, we propose a simple approach for
estimating the uncertainty due to truncation of the chiral expansion, which does not rely on cutoff variation, and
study in detail the convergence of the chiral expansion for various NN observables.

Our paper is organized as follows. In section II, we discuss the chiral expansion for the NN potential up to N3LO.
The new regularization scheme is introduced in section III, while section IV describes our fit procedure and results for
the phase shifts. The cutoff dependence of the obtained predictions is addressed in section V while our results for the
deuteron properties can be found in section VI. The theoretical uncertainty of our results is discussed in section VII,
where we also analyze the convergence of the chiral expansion for various NN scattering observables. Finally, the
main findings of our work are summarized in section VIII.

II. CHIRAL EXPANSION OF THE TWO-NUCLEON POTENTIAL

Chiral effective field theory provides a well-defined perturbative expansion for pionic and single-baryon observables
as well as for nuclear forces and current operators. In the two-flavor sector we are interested in here, the expansion
parameter, denoted as Q, is defined as

Q ∈
{
p

Λb
,
Mπ

Λb

}
, (2.1)

where p refers to magnitude of three momenta of external particles, Mπ is the pion mass and Λb is the breakdown
scale of chiral EFT. In the Goldstone boson and single-nucleon sectors, this scale can be naturally expected to be
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FIG. 1: Chiral expansion of the NN potential up to N3LO. Solid and dashed lines refer to nucleons and pions, respectively.

Solid dots denote the vertices from the lowest-order effective Lagrangians L(0)
π , L(0)

πN and L(0)
NN with the superscript referring

to the chiral dimension, for which we use the notation of Ref. [7], see this work for explicit expressions. Filled circles refer to

vertices from L(1)
πN while squares (diamonds) denote vertices from L(2)

πN and L(2)
NN (L(4)

NN ). Only those diagrams are shown which
lead to contributions to the potential beyond renormalization of various coupling constants. Only irreducible contributions of
various diagrams are taken into account in the potential as explained in the text.

of the order of the ρ-meson mass Mρ.
1 It was also argued [21] that it cannot be larger than the chiral symmetry

breaking scale Λχ = 4πFπ, with Fπ ' 92 MeV the pion decay constant. On the other hand, in the few-nucleon
sector, calculations are usually carried out employing a finite ultraviolet cutoff [22], whose value is typically chosen
of the order of Λ ∼ 500 MeV. Using soft values of the cutoff may effectively reduce the breakdown scale in the actual
calculations. It is, therefore, more appropriate to estimate the breakdown scale of nuclear chiral EFT in a more
conservative way rather than by Mρ ' 770 MeV or even the chiral symmetry breaking scale Λχ ' 1.2 GeV. We will
discuss this issue in more detail in sections V and VII.

Up to N3LO, the NN potential involves contributions from one-, two- and three-pion exchange and contact terms with
up to four derivatives which parametrize short-range interactions

V = V1π + V2π + V3π + Vcont , (2.2)

see Fig. 1 where the corresponding diagrams are shown. Here and in what follows, we adopt the standard power
counting rules for short-range operators which are based on naive dimensional analysis, see Refs. [23–25] for alternative
suggestions and Refs. [22, 26–28] for a related discussion. We further emphasize that diagrams shown in Fig. 1
do actually not correspond to Feynman graphs which provide a graphical representation of the on-shell scattering
amplitude. Rather, they should be understood as a schematic visualization of the irreducible parts of the amplitude,
i.e. those diagrams which do not correspond to iterations of the dynamical equation. For a comprehensive discussion on
the various ways to derive energy-independent nuclear potentials and the associated unitary ambiguities see Refs. [19,
29–33].

The static one-pion exchange potential (OPEP) is well known and takes the form

V pp1π = V nn1π = V1π(Mπ0) ,

V np1π = −V1π(Mπ0) + 2(−1)I+1V1π(Mπ±) , (2.3)

1 In the nucleon sector, one may expect the breakdown scale of the chiral expansion to be lower due to the appearance of the ∆(1232)
resonance. The effects of the intermediate ∆ excitations can by systematically taken into account by treating the ∆ isobar as an explicit
degree of freedom.



4

where I denotes the total isospin of the two-nucleon system and

V1π(Mπ) = − g2A
4F 2

π

~σ1 · ~q ~σ2 · ~q
q2 +M2

π

. (2.4)

Here and in what follows, ~q = ~p ′ − ~p refers to the momentum transfer with ~p and ~p ′ being the initial and final
nucleon momenta in the center–of–mass system (cms), while q ≡ |~q |. Further, ~σi denotes the Pauli spin matrix
of nucleon i. Finally, gA, Fπ and Mπ0/Mπ± denote the axial-vector coupling constant of the nucleon, pion decay
constant and neutral/charged pion mass, respectively. Notice that the above expressions include the isospin-breaking
(IB) correction due to the different pion masses which is known to be the strongest long-range IB contribution, see
Refs. [34–39] for more details on the isospin dependence of the NN force. Charge dependence of the pion-nucleon
coupling constant is consistent with zero [40] and for this reason will not be taken into account in the present work.
The form of the longest-range NN force specified above coincides with the one employed in the Nijmegen partial wave
analysis (NPWA) [41] which we use as input for tuning the short-range interactions. Relativistic corrections to the
OPEP will be discussed at the end of this section.

The chiral expansion of the two-pion exchange potential (TPEP) starts at next-to-leading order (NLO) which corre-
sponds to the chiral order Q2. Using the decomposition of the momentum-space TPEP

V2π = VC + τ 1 · τ 2WC + [VS + τ 1 · τ 2WS ] ~σ1 · ~σ2 + [VT + τ 1 · τ 2WT ] ~σ1 · ~q ~σ2 · ~q
+ [VLS + τ 1 · τ 2WLS ] i(~σ1 + ~σ2) · (~q × ~k) , (2.5)

where ~k = (~p+~p ′)/2, τ i denote the isospin Pauli matrices associated with the nucleon i, while VC,S,T,LS and WC,S,T,LS

are scalar functions which depend on the nucleon momenta, the order-Q2 contributions take the form

W
(2)
C = − L(q)

384π2F 4
π

[
4M2

π(5g4A − 4g2A − 1) + q2(23g4A − 10g2A − 1) +
48g4AM

4
π

4M2
π + q2

]
,

V
(2)
T = − 1

q2
V

(2)
S = − 3g4A

64π2F 4
π

L(q) ,

V
(2)
C = V

(2)
LS = W

(2)
S = W

(2)
T = W

(2)
LS = 0 . (2.6)

The loop function L(q) is defined in dimensional regularization (DR) via

L(q) =

√
4M2

π + q2

q
ln

√
4M2

π + q2 + q

2Mπ
. (2.7)

Notice that we only list here non-polynomial in momenta contributions while all polynomial terms are absorbed into
contact interactions which will be discussed below.

The corrections at order Q3 giving rise to the subleading TPEP have the form

V
(3)
C = − 3g2A

16πF 4
π

[
2M2

π(2c1 − c3)− c3q2
]
(2M2

π + q2)A(q) ,

W
(3)
T = − 1

q2
W

(3)
S = − g2A

32πF 4
π

c4(4M2
π + q2)A(q) ,

V
(3)
S = V

(3)
T = V

(3)
LS = W

(3)
C = W

(3)
LS = 0 , (2.8)

where ci are LECs associated with the subleading ππNN vertices from L(2)
πN and the loop function A(q) is given in

DR by

A(q) =
1

2q
arctan

q

2Mπ
. (2.9)

At order Q4, i.e. N3LO, one encounters further corrections to the TPEP emerging from the various one- and two-loop
diagrams which have been calculated in Ref. [42]. The contributions of the one-loop “bubble” diagrams to the TPEP
take a particularly simple form

V
(4)
C =

3

16π2F 4
π

L(q)

{[c2
6

(4M2
π + q2) + c3(2M2

π + q2)− 4c1M
2
π

]2
+
c22
45

(4M2
π + q2)2

}
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W
(4)
T = − 1

q2
W

(4)
S =

c24
96π2F 4

π

(4M2
π + q2)L(q) . (2.10)

The remaining contributions from one- and two-loop diagrams can be most conveniently written using the (subtracted)
spectral representation of the TPEP

VC,S(q) = −2q6

π

∫ ∞
2Mπ

dµ
ρC,S(µ)

µ5(µ2 + q2)
, VT (q) =

2q4

π

∫ ∞
2Mπ

dµ
ρT (µ)

µ3(µ2 + q2)
,

WC,S(q) = −2q6

π

∫ ∞
2Mπ

dµ
ηC,S(µ)

µ5(µ2 + q2)
, WT (q) =

2q4

π

∫ ∞
2Mπ

dµ
ηT (µ)

µ3(µ2 + q2)
, (2.11)

where ρi and ηi denote the corresponding spectral functions which are related to the potential via ρi(µ) = ImVi(iµ),
ηi(µ) = ImWi(iµ). For the spectral functions ρi(µ) (ηi(µ)) one finds [42]:

ρ
(4)
C (µ) = −3g4A(µ2 − 2M2

π)

πµ(4Fπ)6

{
(M2

π − 2µ2)

[
2Mπ +

2M2
π − µ2

2µ
ln
µ+ 2Mπ

µ− 2Mπ

]
+ 4g2AMπ(2M2

π − µ2)

}
,

η
(4)
S (µ) = µ2η

(4)
T (µ) = −g

4
A(µ2 − 4M2

π)

π(4Fπ)6

{(
M2
π −

µ2

4

)
ln
µ+ 2Mπ

µ− 2Mπ
+ (1 + 2g2A)µMπ

}
,

ρ
(4)
S (µ) = µ2ρ

(4)
T (µ) = −

{
g2Ar

3µ

8F 4
ππ

(d̄14 − d̄15)− 2g6Aµr
3

(8πF 2
π )3

[
1

9
− J1 + J2

]}
,

η
(4)
C (µ) =

{
rt2

24F 4
πµπ

[
2(g2A − 1)r2 − 3g2At

2
]

(d̄1 + d̄2)

+
r3

60F 4
πµπ

[
6(g2A − 1)r2 − 5g2At

2
]
d̄3 −

rM2
π

6F 4
πµπ

[
2(g2A − 1)r2 − 3g2At

2
]
d̄5

− 1

92160F 6
πµ

2π3

[
− 320(1 + 2g2A)2M6

π + 240(1 + 6g2A + 8g4A)M4
πµ

2

− 60g2A(8 + 15g2A)M2
πµ

4 + (−4 + 29g2A + 122g4A + 3g6A)µ6
]

ln
2r + µ

2Mπ

− r

2700µ(8πF 2
π )3

[
− 16(171 + 2g2A(1 + g2A)(327 + 49g2A))M4

π

+ 4(−73 + 1748g2A + 2549g4A + 726g6A)M2
πµ

2

− (−64 + 389g2A + 1782g4A + 1093g6A)µ4
]

+
2r

3µ(8πF 2
π )3

[
g6At

4J1 − 2g4A(2g2A − 1)r2t2J2

]}
, (2.12)

where we have introduced the abbreviations

r =
1

2

√
µ2 − 4M2

π , t =
√
µ2 − 2M2

π , (2.13)

and

J1 =

∫ 1

0

dx

{
M2
π

r2x2
−
(

1 +
M2
π

r2x2

)3/2

ln
rx+

√
M2
π + r2x2

Mπ

}
,

J2 =

∫ 1

0

dxx2
{
M2
π

r2x2
−
(

1 +
M2
π

r2x2

)3/2

ln
rx+

√
M2
π + r2x2

Mπ

}
. (2.14)

Here and in what follows, we use the scale–independent LECs d̄1, d̄2, d̄3, d̄5, d̄14 and d̄15 defined in [43]. One also
has to account for relativistic corrections to the TPEP which will be discussed at the end of this section.

The short-range part of the chiral potential involves in the isospin limit two derivative-less interactions contributing at
leading order (LO), seven terms involving two derivatives at next-to-leading order (NLO) and fifteen terms involving
four derivatives at N3LO. For isospin-breaking contact interactions, we employ here only the leading derivative-less
terms which give rise to charge-independence and charge symmetry breaking in the 1S0 NN phase shift. Notice that
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at N3LO, one, strictly speaking, also needs to take into account IB TPEP as well as the the πγ-exchange potential.
Given that we use the NPWA rather than experimental data as input to determine various LECs accompanying
short-range interactions, we employ here the same treatment of IB effects as used by the Nijmegen group. Specifically,
the only sources of (finite-range) IB contributions to the NN force are given by the OPEP, see Eq. (2.3) and the two
derivative-less IB contact interactions. This is also exactly the same procedure as the one employed in our analysis
reported in Ref. [1]. The contact interactions used in the present work yield the following contributions to the NN
potential in the partial-wave basis

〈1S0, np|V np
cont|1S0, np〉 = C̃np

1S0 + C1S0(p2 + p′2) +D1
1S0 p

2 p′
2

+D2
1S0 (p4 + p′4) ,

〈1S0, pp|V pp
cont|1S0, pp〉 = C̃pp

1S0 + C1S0(p2 + p′2) +D1
1S0 p

2 p′
2

+D2
1S0 (p4 + p′4) ,

〈1S0, nn|V nn
cont|1S0, nn〉 = C̃nn

1S0 + C1S0(p2 + p′2) +D1
1S0 p

2 p′
2

+D2
1S0 (p4 + p′4) ,

〈3S1|Vcont|3S1〉 = C̃3S1 + C3S1(p2 + p′2) +D1
3S1 p

2 p′
2

+D2
3S1 (p4 + p′4) ,

〈1P1|Vcont|1P1〉 = C1P1 p p
′ +D1P1 p p

′ (p2 + p′ 2) ,

〈3P1|Vcont|3P1〉 = C3P1 p p
′ +D3P1 p p

′ (p2 + p′ 2) ,

〈3P0|Vcont|3P0〉 = C3P0 p p
′ +D3P0 p p

′ (p2 + p′ 2) ,

〈3P2|Vcont|3P2〉 = C3P2 p p
′ +D3P2 p p

′ (p2 + p′ 2) ,

〈1D2|Vcont|1D2〉 = D1D2 p
2 p′2 ,

〈3D2|Vcont|3D2〉 = D3D2 p
2 p′2 ,

〈3D1|Vcont|3D1〉 = D3D1 p
2 p′2 ,

〈3D3|Vcont|3D3〉 = D3D3 p
2 p′2 ,

〈3S1|Vcont|3D1〉 = C3D1−3S1 p
2 +D1

3D1−3S1 p
2 p′2 +D2

3D1−3S1 p
4 ,

〈3D1|Vcont|3S1〉 = C3D1−3S1 p
′2 +D1

3D1−3S1 p
2 p′2 +D2

3D1−3S1 p
′4 ,

〈3P2|Vcont|3F2〉 = D3F2−3P2 p
3 p′ ,

〈3F2|Vcont|3P2〉 = D3F2−3P2 p p
′3 , (2.15)

where C̃i, C̃
np
i , C̃pp

i , C̃nn
i , Ci and Di denote the corresponding LECs. The relation between these LECs and the ones

corresponding to the operator form of the short-range potential can be found in Eq. (2.6) of Ref. [1]. Notice further
that we do not show explicitly the pion mass dependence of various contact interactions.

Finally, let us discuss the relativistic corrections to the potential which according to our power counting scheme start
to contribute at N3LO. Notice that following Ref. [44], we treat the nucleon mass as a heavier scale as compared
with the breakdown scale Λb by counting Q/mN ∼ Q2/Λ2

b . The relativistic corrections are scheme-dependent or,
more precisely, depend on the employed form of the dynamical equation and the choice of unitary transformations
as explained in detail in Ref. [45]. Contrary to the static N3LO contributions, the results for the 1/m2

N -corrections
to the OPEP and 1/mN -corrections to the TPEP are not uniquely determined by the renormalizability requirement
of the nuclear forces [46] and depend on two arbitrary parameters, called β̄8,9 in that work, which correspond to the
unitary ambiguity of the potential and are related to the parameters µ and ν of Ref. [45] via

µ = 4β̄9 + 1, ν = 2β̄8 . (2.16)

Here and in what follows, we employ the “minimal nonlocality” choice of the potential corresponding to setting µ = 0
and ν = 1/2 or, equivalently, β̄8 = 1/4, β̄9 = −1/4.2 This particular choice implies that the only 1/m2

N -corrections to
the OPEP stem from accounting for the relativistic normalization of the nucleon field operators. Using the relativistic
Schrödinger equation for NN scattering of the form[

2
√
p2 +m2

N + V

]
Ψ = 2

√
k2 +m2

NΨ , (2.17)

where mN = mp for the proton-proton (pp), mN = mn for the neutron-neutron (nn) and mN = 2mpmn/(mp +mn)
for the neutron-proton (np) case and k denotes the momentum corresponding to the energy eigenvalue E, the full

2 We correct here a misprint in Eq. (4.24) of Ref. [46], where the “minimal nonlocality” choice was specified by β̄8 = 1/4, β̄9 = 0.
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non-static expression for the OPEP takes the form

V1π =
mN

E0
V static
1π

mN

E0
=

(
1− p 2 + p ′2

2m2
N

+O(m−4N )

)
V static
1π , (2.18)

where E0 =
√
p 2 +m2

N is an operator. Notice that here and in what follows, we use the notation p ≡ |~p |, p′ ≡ |~p ′|
and q ≡ |~q |. The corresponding 1/mN -corrections to the TPEP read [45]3

V
(4)
C =

3g4A
512πmNF 4

π

{
2M5

π

4M2
π + q2

− 3(4M4
π − q4)A(q)

}
,

W
(4)
C =

g2A
128πmNF 4

π

{
3g2AM

5
π

4M2
π + q2

−
[
4M2

π + 2q2 − g2A
(

7M2
π +

9

2
q2
)]

(2M2
π + q2)A(q)

}
,

V
(4)
T = − 1

q2
V

(4)
S =

9g4A
512πmNF 4

π

(
4M2

π +
3

2
q2
)
A(q) ,

W
(4)
T = − 1

q2
W

(4)
S = − g2A

256πmNF 4
π

[
8M2

π + 2q2 − g2A
(

4M2
π +

3

2
q2
)]

A(q) ,

V
(4)
LS = − 3g4A

64πmNF 4
π

(2M2
π + q2)A(q) ,

W
(4)
LS = −g

2
A(1− g2A)

64πmNF 4
π

(4M2
π + q2)A(q) . (2.19)

It is customary to rewrite the relativistic Schrödinger equation (2.17) in the equivalent non-relativistic form [45][
p2

mN
+ Ṽ

]
Ψ′ =

k 2

mN
Ψ′ , (2.20)

where the potential operator Ṽ is given by

Ṽ =

{√
p2 +m2

N

2mN
, V

}
+

V 2

4mN
, (2.21)

and {, } denotes the anti-commutator. This implies, in particular, that the 1/mN -corrections to the TPEP receive
further contributions induced by the second term in the right-hand side of the above equation, V 2

1π/(4mN ), which
have the form

δV
(4)
C =

3g4A
512πmNF 4

π

(2M2
π + q2)2A(q) ,

δW
(4)
C = − g4A

256πmNF 4
π

(2M2
π + q2)2A(q) ,

δV
(4)
T = − 1

q2
δV

(4)
S = − 3g4A

1024πmNF 4
π

(4M2
π + q2)A(q) ,

δW
(4)
T = − 1

q2
δW

(4)
S =

g4A
512πmNF 4

π

(4M2
π + q2)A(q) , (2.22)

and need to be added to the expressions in Eq. (2.19). It is this form of the Schrödinger equation which was used in the
NPWA and is employed in the present analysis. We refer the reader to appendix A for more details on the kinematics
and notations. To summarize, the relativistic corrections to the NN potential at N3LO in the cms employed in the
present work consist of:

• 1/mN -corrections to the static TPEP according to Eqs. (2.19) and (2.22),

3 Notice that there are misprints in Eq. (2.23) of Ref. [1] for V
(4)
T and W

(4)
T,S .
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• O(m−2N )-corrections to the static OPEP and the resulting TPEP according to Eqs. (2.18) and (2.21),{
mN

2E0
, V static

1π + V2π

}
− (V static

1π + V2π) . (2.23)

This particular choice is appropriate at the order we are working and is well suited for the local regularization
of the long-range potentials employed in our analysis, see the next section for more details. Notice that the
relativistic corrections to the contact interactions in the cms have the same form as the static terms and thus
need not to be considered separately.

We emphasize that we also included the leading 1/mN -corrections emerging from triangle two-pion exchange diagrams
involving subleading πN vertices, i.e. proportional to ci. The corresponding expressions are not affected by unitary
ambiguity of the potential and can be found in Ref. [42]. While these contributions appear nominally at next-to-next-
to-next-to-next-to-leading order in the chiral expansion within the employed power counting scheme, the resulting
potentials are known to be rather strong, presumably due to the LECs c2,3,4 being numerically large. We have checked
that neglecting those terms does not substantially affect the quality of the fits but would result in a smaller range of
cutoffs.

III. REGULARIZATION

Nuclear potentials derived in chiral EFT generate ultraviolet (UV) divergences once substituted into the Lippmann-
Schwinger (LS) equation. The appearance of UV divergences in loop diagrams is an intrinsic feature of any EFT
which can be traced back to the derivative expansion of the effective Lagrangian. While perturbative calculations of
e.g. pion-pion or pion-nucleon scattering within chiral perturbation theory are usually organized in such a way that
all UV divergences at a given order are absorbable into redefinition of the available LECs, the situation is different for
nucleon-nucleon scattering described in terms of non-perturbative solution of the LS equation. While it is possible to
formulate a renormalizable approach to NN scattering with non-perturbative treatment of the OPEP [28, 47, 48], a
much simpler and commonly adopted way to renormalize the LS equation is based on introducing a finite UV cutoff.
(Implicit) renormalization of the NN amplitude is then achieved by tuning the (bare) LECs accompanying the contact
interactions to experimental data or phase shifts. One advantage of such an approach, beyond its simplicity, is the
ability to combine the resulting nuclear potentials with the available few- and many-body machinery which allows one
to access observables beyond the NN system. The obvious disadvantage compared to the renormalizable framework
suggested in Ref. [28] is the appearance of finite-cutoff artefacts as manifested e.g. in a residual cutoff dependence
of nuclear observables. This feature is unavoidable in calculations within such an approach (unless one is able to
subtract all divergent integrals generated by iterations of the chiral potentials in the LS equation). As a consequence,
the UV momentum-space cutoff Λ has to be kept finite and (ideally) of the order of the pertinent breakdown scale in
the problem [22, 26, 27, 49].

In practice, one is rather limited with respect to the range of cutoff values since choosing Λ ∼ Mρ or larger was
already found to result in spurious deeply-bound states [1]. While such unphysical deeply bound state do not affect
low-energy observables, they do drastically complicate applications to three- and more-nucleon systems. For this
reason, Ref. [1] has employed the cutoff range of Λ = 450 . . . 600 MeV while the Idaho N3LO potential is available for
two cutoff values only, namely Λ = 500 MeV and Λ = 600 MeV [2, 19]. We further emphasize that lattice spacings
employed in recent nuclear lattice simulations of Ref. [50–55] correspond to even smaller cutoff values.

Given the relatively low values of Λ, it is clearly desirable, in order to increase the accuracy and applicability range
of nuclear chiral EFT, to reduce the amount of finite-cutoff artefacts, see Ref. [56] for a recent lattice EFT work in a
similar spirit, or at least to employ regularization which avoids introducing unnecessary artefacts. In the following,
we will argue that the momentum-space regularization used in the N3LO potentials of Refs. [1, 2] does induce certain
kinds of artefacts which can be easily avoided by carrying out regularization in coordinate space as used recently in
the construction of the local chiral NN potentials up to next-to-next-to-leading order (N2LO) [57, 58].

Chiral nuclear forces involve generally two distinct kinds of contributions: first, at large distances the potential is
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Im E

Re EEπE2π

FIG. 2: Singularity structure of the partial-wave two-nucleon scattering amplitude in the complex energy plane. The solid
dot indicates the position of the S-wave (virtual) bound state. Elastic unitarity is satisfied on the right-hand cut, also called
unitarity cut. Left-hand cuts are caused by exchange processes in the potential. The first and second left-hand cuts due to
one- and two-pion exchange start at laboratory energy of Eπ = −M2

π/(2mN ) ∼ 10 MeV and E2π = −2M2
π/mN ∼ 40 MeV,

respectively.

governed by contributions emerging from pion exchanges which are unambiguously4 determined by the chiral symmetry
of QCD and experimental information on the pion-nucleon system needed to pin down the relevant LECs. Secondly,
the short-range part of the potential is parametrized by all possible contact interactions with increasing number
of derivatives. It is desirable to introduce regularization in such a way that the long-range part of the interaction
including especially the OPEP, which is responsible for left-hand cuts in the partial-wave scattering amplitude as
visualized in Fig. 2 and thus governs near-threshold energy behavior of the S-matrix, is not affected by the regulator.
Notice that the near-threshold left-hand singularities of the amplitude can be tested e.g. via the low-energy theorems
[27, 59].

The standard implementation of the regulator used e.g. in Refs. [1, 2] is as follows:

V (~p ′, ~p )→ Vreg(~p ′, ~p ) = V (~p ′, ~p ) exp

(
−p
′m + pm

Λm

)
, (3.24)

where the power m is chosen sufficiently large in order that the cutoff artefacts V (~p ′, ~p ) × O
(
(Q/Λ)m

)
are beyond

the chiral order one is working at. Specifically, Ref. [1] used m = 6 while Ref. [2] employed different powers m ≤ 6 for
different terms in the potential, presumably in order to optimize the quality of the fit. It is clear that the multiplicative
regulator introduced above leads to distortions of the analytic structure of the partial-wave amplitude near threshold
as it affects the discontinuity across the left-hand cuts, see also Refs. [60, 61] for recent studies of NN scattering
which explicitly exploit the analytic structure of the amplitude. While such distortions are small if Λ can be chosen
sufficiently large, they can lead to sizable effects for the commonly adopted choices of Λ ∼ 500 MeV. It is easy to
avoid this unpleasant feature by exploiting the fact that long-range potentials derived in chiral EFT are nearly local,
i.e. depend only on momentum transfer ~q. In fact, the only source of non-locality is given by relativistic corrections
which, in the power counting scheme we are using, start to appear at N3LO, see the previous section. The feature
of locality naturally suggests to apply regularization in coordinate space similar to what was done in Refs. [57, 58]
by cutting off short-range parts of the pion-exchange potentials, for which chiral expansion does not converge, see
Ref. [62] for a related discussion:

Vlong−range(~r )→ V reg
long−range(~r ) = Vlong−range(~r )f

( r
R

)
, (3.25)

where the regulator function f(x) is chosen such that its value goes to 0 (1) sufficiently fast for x→ 0 (exponentially
fast for x� 1). It is instructive to write this regularization in momentum space,

V (~q )→ V reg(~q ) = V (~q )−
∫

d3l

(2π)3
V (~l ) FT~q−~l [1− f ] , (3.26)

4 Strictly speaking, even the long-range tail of the potential is scheme-dependent as it can be affected by unitary transformations. Notice,
however, that unitary ambiguity of the chiral nuclear forces was found to be strongly reduced in the static limit if one demands that
the corresponding potentials are renormalizable [32].
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where FT stays for the Fourier-Transform. Given that FT [1− f ] is a short-range operator, the second term in
the right-hand side of the above equation does not induce any long-range contributions. This is in contrast to the
procedure specified in Eq. (3.24), where long-range terms are induced by regularization (albeit suppressed by inverse
powers of the cutoff Λ). Notice further that the suggested regularization is qualitatively similar to the well-known
Pauli-Villars regularization.

As will be shown in the next section, the above choice of the regulator makes the additional SFR of the pion exchange
contributions obsolete. This is a particularly welcome feature in view of the fact that the expressions for the three-
nucleon force at N3LO [46, 63, 64] are only available in the framework of DR which corresponds to choosing an
infinitely large cutoff in the spectral function representation. Notice further that recent calculations of the three-
nucleon force beyond N3LO [11, 65] are also carried out in the framework of DR. The SFR was originally introduced
in Refs. [17, 18] as an attempt to avoid unnaturally strong attraction generated by the subleading TPEP in the
isoscalar central channel [29] caused by short-range components in the spectral representation. The SFR framework
was used to construct the N3LO potential of Ref. [1]. Notice, however, that in spite of employing the SFR, it was
necessary to set the LEC c3, which governs the isoscalar part of the N2LO TPEP, to its lowest in magnitude value
still compatible with πN scattering in order to avoid the appearance of deeply bound states.

We are now in the position to specify the regulator function f(r/R), for which the choice f(r/R) = 1− exp(−(r/R)4)
was adopted in Refs. [57, 58]. Given that DR expressions for TPEP at N2LO behave at short distances as 1/r6, such
a regulator is insufficient to make the DR potential non-singular and can only be used in combination with the SFR
which makes the TPEP less singular. Notice further that such a regulator induces oscillations in momentum-space
matrix elements of the potential V (~q ) for large values of q which may represent a considerable complication for
numerical applications. In order to avoid this unpleasant feature, the regulator function can be chosen in the form

f
( r
R

)
=

[
1− exp

(
− r

2

R2

)]n
, (3.27)

where the exponent n has to be taken sufficiently large. It is necessary to choose n = 4 or larger in order to
make the regularized expressions for the DR TPEP at N3LO vanishing in the origin, but we found that larger
values of n lead to more stable numerical results when doing calculations in momentum space.5 Here and in what
follows, we make the choice n = 6. For contact interactions, we employ the standard nonlocal regulator specified in
Eq. (3.24) and set m = 2 so that the regulator is again of a Gaussian type. In order to have a single cutoff scale,
we will relate the coordinate- and momentum-space cutoffs R and Λ by setting Λ = 2R−1 motivated by the relation
FTq

[
exp(−r2/R2)

]
∝ exp(−q2R2/4). We will show below that the results of our analysis depend little on specific

details of the regulator.

IV. FITS AND RESULTS FOR THE PHASE SHIFTS

Having specified the regularization, we now describe the fit procedure and show our results for phase shifts. We
begin with specifying the values of the LECs and masses that enter the potentials. Here and in what follows, we use
mp = 938.272 MeV, mn = 939.565 MeV for the nucleon masses and Mπ± = 139.57 MeV and Mπ0 = 134.98 MeV for
the charged and neutral pion masses, respectively. For the average pion mass which enters the expressions for the
TPEP the value Mπ = 138.03 MeV is adopted. Further, we use the values Fπ = 92.4 MeV and gA = 1.267 for the pion
decay and nucleon axial coupling constants. Starting from NLO, one needs to account for the Goldberger-Treiman
discrepancy which can be achieved via the replacement

gA → gA − 2d18M
2
π , (4.28)

where d18 is a LEC from the sub-subleading pion-nucleon effective Lagrangian. Following [1], we adopt the larger
value gA = 1.29 instead of gA = 1.267 in order to account for the Goldberger-Treiman discrepancy in the expressions
for the OPEP and, at N3LO, also for the leading TPEP. Using the Goldberger-Treiman relation gπN = gAmN/Fπ,

5 Given that locally-regularized potentials V (~q ) show only a power-low decrease for high values of momentum transfer q, much higher
virtual momenta are involved in solving the LS equation as compared to the nonlocal chiral potentials of Refs. [1, 2].
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TABLE I: Values of the LECs ci in units of GeV−1 used in the various N3LO NN potentials in comparison with the empirically
determined values from πN scattering as described in the text.

LEC N3LO potential of Ref. [2] N3LO potential of Ref. [1] this work Empirical

c1 −0.81 −0.81 −0.81 −0.81± 0.15 [68]

c2 2.80? 3.28 3.28 3.28± 0.23 [43]

c3 −3.20? −3.40† −4.69 −4.69± 1.34 [68]

c4 5.40? 3.40 3.40 3.40± 0.04 [68]

?Fit parameter.
†Larger in magnitude values were found to lead to spurious deeply-bound states.

this value of gA leads to g2πN/(4π) = 13.67 which is consistent with the recent determination via the Goldberger-
Miyazawa-Oehme sum rule [66], g2πN/(4π) = 13.69± 0.20, as well as with the older determinations from NN [40] and
πN [67] scattering data.

It remains to specify the πN LECs ci and di which enter the TPEP at N3LO. In Table I, we list the values of the ci’s
adopted in the N3LO potentials of Refs. [1, 2] and in the current work together with the empirical values determined
from pion-nucleon scattering inside the Mandelstam triangle (fit 1). Using this unphysical kinematics in combination
with dispersion relations has the advantage that the chiral expansion converges faster than in the physical region.
Thus, one expects the determined LECs to have smaller theoretical uncertainties due to truncation of the chiral
expansion as compared to fits in the physical region. For the LEC c2, which could not be reliably determined in
[68], we give the value from the order Q3 heavy-baryon calculation of Ref. [43]. We emphasize that several more
recent determinations of these LECs from πN scattering up to order Q4 in the heavy-baryon as well as manifestly
covariant formulations of chiral perturbation theory are available, see e.g. [65, 69–72]. In addition, attempts were
made to determine the LECs c1,3,4 from nucleon-nucleon scattering data based on the two-pion exchange potential
calculated at N2LO [73–78] and N3LO [2]. In particular, the values found in Refs. [73, 75, 78] are consistent, within
the quoted uncertainties, with the results obtained in pion-nucleon scattering. Notice, however, that none of these
studies have addressed the question of the systematic theoretical uncertainties, in particular due to truncation of the
chiral expansion for the potential at a given order. Accordingly, the interpretation of these findings is not completely
clear. Finally, for the LECs di from the order-Q3 effective pion-nucleon Lagrangian which contribute to the N3LO
TPEP we adopt, following Refs. [1, 2], the central values from fit 1 to πN phase shift given in Ref. [43], namely

d̄1 + d̄2 = 3.06 GeV−2, d̄3 = −3.27 GeV−2, d̄5 = 0.45 GeV−2, d̄14 − d̄15 = −5.65 GeV−2 . (4.29)

For the regulator R, we employ the same range as used in the local versions of the N2LO NN potential of Ref. [57],
namely R = 0.8 . . . 1.2 fm. Specifically, we will carry out fits for five different values of R, namely R = 0.8 fm,
R = 0.9 fm, R = 1.0 fm, R = 1.1 fm and R = 1.2 fm. Notice that the smallest value of the cutoff R, R = 0.8 fm,
coincides with the estimated distance at which the chiral expansion of the NN potential is expected to break down
[62]. When transformed to momentum space using the relation Λ = 2R−1 as motivated in the previous section, the
employed cutoff range corresponds to the range of Λ ' 500 . . . 330 MeV.

Following the procedure of the NPWA [41] which we use as input for our calculations, we fit all isospin-1 channels to
pp phase shifts, which are accurately determined from the available scattering data, and generate np and nn phase
shifts (with the exception of the 1S0 partial wave) by using the appropriate kinematical relations, see Eqs. (A.2),
(A.3) and (A.4), taking into account the isospin-breaking corrections to the OPEP due to the different pion masses,
see Eq. (2.3), and switching off the long-range electromagnetic interactions6. More precisely, pp phase shifts of
Ref. [41], which we use as input in our fits, actually correspond to phase shifts of the electromagnetic plus nuclear
interaction with respect to electromagnetic wave functions, i.e. δEM

EM+N in the notation of Ref. [41]. The dominant

6 Notice that such a “minimalistic” treatment of IB effects in the present analysis is dictated by using the NPWA results rather than NN
experimental data as input for our fits. In particular, we do not take into account the known IB two-pion exchange contributions since
they would induce shifts δnp − δpp incompatible with the results of Ref. [41]. A more complete treatment of IB corrections using NN
experimental data is left for a future work.
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contributions to the long-range electromagnetic interaction are well known and include the usual static Coulomb
potential, the leading relativistic correction to the Coulomb potential, the magnetic moment interaction and the
vacuum polarization potential, see e.g. [1, 41] and references therein for more details and explicit expressions. Notice
that the static Coulomb potential in combination with the leading relativistic correction is often referred to as the
modified or relativistic Coulomb interaction. The NPWA employs the approximation δEM

EM+N ≈ δCC+N for all pp

channels except 1S0, where C means that the electromagnetic interaction is approximated by the Coulomb potential.
For the 1S0 partial wave, the approximate relation between the phase shifts δEM

EM+N published in [41] and δCC+N can
be obtained using distorted wave Born approximation. The resulting fairly model-independent shifts are tabulated in
Ref. [79] and appear to be negligibly small for energies larger than Elab ∼ 30 MeV. Throughout this work, we use pp
phase shifts corresponding to the modified Coulomb plus nuclear interaction with respect to the modified Coulomb
wave functions and employ the corrections given in Ref. [79] to relate these phase shifts to the ones of the NPWA [41]
in the 1S0 partial wave. For the np case, the calculated and shown phase shifts are that of the nuclear interaction
with respect to Ricatti-Bessel functions. Notice that np phase shifts of the NPWA [41] actually correspond to δMM

MM+N
since the electromagnetic interaction in that case is entirely given by the magnetic moment (MM) interaction within
the NPWA. It is well known that the approximation [80] δEM

EM+N ≈ δN is rather accurate for all channels except for

the 3S1 partial wave [80]. We will employ this standard approximation for all np partial waves in order to directly
compare our phase shifts with the ones of the NPWA [41]. It should be understood that effects of the magnetic
moment interaction in δMM

MM+N in the 3S1 channel of the NPWA [41] are mimicked by contact interactions in the
potential when we calculate δN . We emphasize that our choice for the phase shifts throughout this work is the same
as the one adopted e.g. in Refs. [2, 81].

For each value of the cutoff R, we determine the LECs accompanying the short-range operators specified in Eq. (2.15)

from a fit to np and pp phase shifts of the NPWA [41]. Specifically, we have in total 4 LECs at LO (C̃3S1, C̃np
1S0,

C̃pp
1S0 and C̃nn

1S0), 11 LECs at NLO and N2LO (C̃3S1, C̃np
1S0, C̃pp

1S0, C̃nn
1S0 and Ci) and 26 LECs at N3LO (C̃3S1, C̃np

1S0,

C̃pp
1S0, C̃nn

1S0, Ci and Di). Notice that while it is not necessary to account for isospin breaking at LO from the point
of view of power counting, we decided to include the same isospin-breaking corrections in order to be consistent with
the procedure of the NPWA and to allow for a meaningful comparison of results at different orders. The fits are
carried out using the same energies as employed in the multi-energy partial wave analysis of the Nijmegen group,
namely Elab = 1, 5, 10, 25, 50, 100, 150, 200, 250 and 300 MeV. Specifically, we use the energies Elab ≤ 25 MeV at
LO, Elab ≤ 100 MeV at NLO and N2LO and Elab ≤ 200 MeV at N3LO. The results for phase shifts at higher energies
are thus to be regarded as predictions.

At N3LO, we found that fits in the 3S1-3D1 become unstable, which manifests itself in the appearance of different
solutions which describe equally well the 3S1 and 3D1 phase shifts and the mixing angle ε1. This feature becomes
especially disturbing for the hardest cutoff choices of R = 0.8 fm and R = 0.9 fm and indicates that 8 unknown
LECs in this channel offer too much flexibility in the description of the phase shifts and the mixing angle. In
addition to requiring that the resulting LECs are of natural size, we decided to impose further constraints to stabilize
the fits in this channel. In particular, we demand that the deuteron binding energy is correctly reproduced and
discard solutions which lead to unrealistic values of the D-state probability in the deuteron or show a too strong
violation of the Wigner SU(4) symmetry which implies the relation C̃1S0 ' C̃3S1 [82], see also Ref. [83]. It should
be emphasized that the deuteron D-state probability PD is not a measurable quantity and can be changed by means
of a unitary transformation [84]. Modern phenomenological NN potentials typically yield the values of PD in the
range of PD = 4 . . . 6%. In particular, the AV18 [80], Nijmegen I and II and Reid93 [85] potentials have PD = 5.76%,
PD = 5.66% PD = 5.64% and PD = 5.70%, respectively, while the CD-Bonn potential [81] leads to a smaller value
of PD = 4.85%, see Ref. [86] for a related discussion. Furthermore, the chiral N3LO potential of Refs. [2] yields
PD = 4.51% while the ones of Ref. [1] lead to even smaller values. It is conceivable that NN potentials corresponding
to the choice of unitary transformation leading to values of PD very different from the ones listed above would require
strong many-body forces and exchange currents, the feature which is certainly worrisome in the context of effective
field theory but also from the computational point of view, see e.g. the discussion in Ref. [87]. Thus, we decided to
introduce the deuteron D-state probability PD = 5%± 1% as an additional “data” point in the fit. As for the second
constraint on the value of C̃3S1, we employ a simple “augmented χ2” following the lines of Ref. [88] to penalize those

values of C̃3S1 which are considerably different from the ones of C̃1S0 for the same choice of the cutoff. In practice,
this is achieved by using

χ2
aug = χ2 + χ2

prior , with χ2
prior =

(C̃3S1 − C̃1S0)2

(∆C̃3S1)2
, (4.30)

where we choose ∆C̃3S1 = C̃1S0/4. Notice that this additional constraint is, in fact, only active for the two hardest
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TABLE II: The LECs C̃pp
1S0, C̃nn

1S0, C̃np
1S0, C̃3S1, Ci and Di at N3LO for different values of the cutoff R. The values of the C̃i,

Ci and Di are given in units of 104 GeV−2, 104 GeV−4 and 104 GeV−6, respectively.

LEC R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

C̃pp
1S0 0.2363 0.1648 0.1090 0.0574 0.0166

C̃nn
1S0 0.2352 0.1631 0.1070 0.0551 0.0140

C̃np
1S0 0.2328 0.1600 0.1035 0.0513 0.0100

C1S0 −0.0433 −0.0400 −0.1155 −0.2078 −0.3344

D1
1S0 3.0691 −1.8080 −6.9812 −13.3659 −21.9934

D2
1S0 0.6135 3.0136 6.4537 10.8060 16.5111

C3P0 1.0678 0.7812 0.5120 0.2645 0.0313

D3P0 −0.4030 0.6311 1.5809 2.5084 3.4432

C1P1 1.0068 0.8095 0.6926 0.6267 0.5930

D1P1 0.9480 1.6652 2.4623 3.4613 4.7819

C3P1 1.3413 1.1253 0.9667 0.8592 0.7865

D3P1 −0.7070 0.3656 1.4145 2.6058 4.1340

C̃3S1 0.2441 0.1688 0.1043 0.0513 0.0097

C3S1 −0.3292 −0.3844 −0.4256 −0.4868 −0.5790

D1
3S1 −4.5205 −8.0894 −12.3514 −17.5859 −23.6921

D2
3S1 3.8438 6.4034 9.2050 12.3977 15.7636

C3D1−3S1 0.3424 0.4092 0.5388 0.7298 0.9624

D1
3D1−3S1 0.8641 −0.3181 −2.0898 −4.3925 −7.3943

D2
3D1−3S1 −1.5054 −0.3157 1.6466 4.2798 8.0089

D3D1 1.4422 1.2225 1.1240 1.1446 1.1740

D1D2 1.3770 0.9617 0.4782 −0.1144 −0.8569

D3D2 0.6540 0.0259 −0.8805 −2.1386 −3.8116

C3P2 0.5639 0.3189 0.1418 0.0134 −0.0768

D3P2 −0.5008 −0.4398 −0.6095 −1.0773 −1.9421

D3F2−3P2 −0.1355 −0.2343 −0.4108 −0.6946 −1.1275

D3D3 −0.1655 −0.4103 −0.7289 −1.1377 −1.6564

choices of the cutoff as the unconstrained fits in other cases already lead to C̃3S1 ' C̃1S0. For example, the value for
C̃3S1 resulting from the unconstrained fit with the cutoff R = 1 fm appears to lie within 1% of the value of C̃1S0.

Having specified the details of the fitting procedure, we are now in the position to discuss the results. In Table II,
we give the obtained values of the various LECs at N3LO for different choices of the cutoff R. It is important to
keep in mind that the LECs correspond to bare quantities and are expected to depend significantly on the chiral
order, employed regularization scheme and the choice of the cutoff. Although the LECs at NLO and N2LO were
demonstrated in Ref. [83] to be well described in terms of resonance saturation by heavy-meson exchanges, it makes
generally little sense to directly compare the LECs obtained by using different regularization schemes with each other.
For example, due to the choice of a Gaussian regulator for contact interactions adopted in the present work, the LECs
Di contain contributions induced by contact interactions at lower orders driven by the LECs C̃i and Ci. A more
meaningful comparison between the different approaches should rather be done at the level of observables or, more
generally, renormalized quantities. What is, however, important to verify is that the obtained LECs are of a natural
size. The natural size for the various LECs can be roughly estimated as [1]

|C̃i| ∼
4π

F 2
π

, |Ci| ∼
4π

F 2
πΛ2

b

, |Di| ∼
4π

F 2
πΛ4

b

, (4.31)

where the factor of 4π emerges from the angular integration in the partial wave decomposition and Λb is the pertinent
hard scale. If the scale Λb is identified with the employed ultraviolet cutoff Λ = 2R−1, the expected natural size of the
LECs |C̃i|, |Ci| and |Di| is 0.15×104 GeV−2, 0.6×104 GeV−4 (1.4×104 GeV−4) and 2.5×104 GeV−6 (13×104 GeV−6),
respectively, for the hardest (softest) employed cutoff R = 0.8 fm (R = 1.2 fm). This would imply that all obtained
LECs are of a natural size. On the other hand, as we will show in the next section, the actual breakdown scale Λb in
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FIG. 3: Chiral expansion of the NN phase shifts in comparison with the NPWA [41] (solid dots) and the GWU single-energy np
partial wave analysis [89] (open triangles). Dotted, dashed (color online: brown), dashed-dotted (color online: blue) and solid
(color online: red) lines show the results at LO, NLO, N2LO and N3LO, respectively, calculated using the cutoff R = 0.9 fm.
Only those partial waves are shown which have been used in the fits at N3LO.

our case appears to be somewhat larger than the UV cutoff Λ = 2R−1. In particular, we will use Λb = 400 . . . 600 MeV,
depending on the employed value of R, for estimating the theoretical uncertainty in section VII. This implies that
the natural size of the LECs |Ci| and |Di| is expected to be 0.4× 104 GeV−4 (0.9× 104 GeV−4) and 1.1× 104 GeV−6

(6× 104 GeV−6), respectively, for the hardest (softest) cutoff choices. Also for such an estimation, all LECs are of a
natural size (with the values of D1

3S1 appearing to be somewhat large in magnitude).

In Fig. 3, we show our results at different orders in the chiral expansion for np phase shifts and mixing angles used
in the N3LO fit. Here, we restrict ourselves to one particular cutoff choice, namely R = 0.9 fm, in order to have
not too many lines in the plots. The cutoff dependence of our results will be addressed in sections V and VII. One
clearly observes a good convergence pattern with the N3LO results being in excellent agreement with the NPWA in
the whole considered range of energies. The convergence pattern is in most cases qualitatively similar to the one
reported in Ref. [1] although there are differences in certain channels. For example, for the 3P0 partial wave, the
results at NLO and N2LO of Ref. [1] indicate too much repulsion at higher energies while the opposite is observed in
our analysis. Still, these results are consistent with each other within the estimated theoretical uncertainty at these
orders, see section VII for more details. Concerning the N3LO results, the improved NN potential of this work shows
a superior performance in the whole considered energy range compared to the potential of Ref. [1] as will be shown
below. We attribute this feature primarily to a better choice of regularization, see section III for more details. We
also emphasize that our N3LO results for peripheral, i.e. F- and higher partial waves not shown in Fig. 3 are similar
to the ones reported in Refs. [1, 90]. In particular, we also observe large relative deviations for F-waves at higher
energies. For example, for the cutoff R = 0.9 fm, we find δnp3F2 = 3.1◦ at Elab = 250 MeV to be compared with the
NPWA result δnp3F2 = 1.4◦. Notice, however, that absolute deviations from the NPWA for F-waves appear to be of a
similar size as the ones observed in low partial wave so that there is no reason to expect the theoretical uncertainty
in low-energy observables to be dominated by the discrepancies in F-waves. It is conceivable that the deviations for
F-waves will be largely reduced by the order-Q6 contact interactions.

It is desirable to have a quantitative criterium for comparing the accuracy of different potentials with each other.
Usually, this is achieved by calculating the χ2/datum for the reproduction of the available np and pp scattering data.
Presently, we do not have the necessary machinery to carry out such a calculation and reserve this task for a future
study. In the present work, we employ a simpler approach and calculate χ2/datum for the reproduction of the phase
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TABLE III: χ2/datum for the description of the Nijmegen np and pp phase shifts [41] as described in the text. Only those
channels are included which have been used in the N3LO fits, namely the S-, P- and D-waves and the mixing angles ε1 and ε2.

Elab bin CD-Bonn — Idaho N3LO — N3LO of [1] — improved chiral potentials at N3LO, this work —

(MeV) (500) (600) (550/600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton phase shifts

0–100 0.6 1.7 5.2 1.9 0.8 0.7 0.6 0.7 1.4

0–200 0.6 2.2 5.3 2.1 0.8 0.7 0.6 0.8 1.8

0–300 0.6 3.3 6.8 6.0 2.1 1.5 1.8 4.0 10.7

proton-proton phase shifts

0–100 0.5 1.5? 6.7? 8.3 1.8 0.8 0.5 1.2 4.6

0–200 1.3 2.9? 11.7? 14.7 2.1 0.7 0.6 2.2 8.2

0–300 1.3 5.9? 30.0? 75.3 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account as explained in the text.

shifts of the NPWA used as input in our analysis. Specifically, we calculate χ2/datum at energies of Elab = 1, 5, 10,
25, 50, 100, 150, 200, 250 and 300 MeV employed in the NPWA and also in our fits. Unfortunately, the NPWA [41]
only provide statistical errors which do not include systematic uncertainties. In order to have a meaningful definition
of χ2, we define the uncertainty for a given phase shift (or mixing angle) δ in the channel X at a given energy as

∆X = max
(

∆NPWA
X , |δNijmI

X − δNPWA
X |, |δNijmII

X − δNPWA
X |, |δReid93

X − δNPWA
X |

)
, (4.32)

where δNPWA
X and ∆NPWA

X refer to the phase shift (or mixing angle) in the channel X and the corresponding statistical

error of the NPWA, respectively, while δNijmI
X , δNijmI

X and δReid93
X denote the results based on the Nijmegen I, II and

Reid93 NN potentials of Ref. [85]. These phenomenological potentials are constructed using the same database as
employed in the NPWA and have a nearly optimal χ2/datum of 1.03. For this reason, they have, in fact, been
suggested as alternative partial wave analyses [85]. While the above definition of uncertainties provides a reasonable
estimation, one should not overinterpret the resulting values for χ2/datum calculated based on the NPWA phase
shifts in the way specified above.7 In particular, there is no statistical interpretation of the value of χ2/datum. We,
nevertheless, still find this approach useful for the sake of a simple comparative analysis of the accuracy of different
NN potentials. We also used the errors defined above in all our fits.

In Table III we show the χ2/datum for the description of the Nijmegen np and pp phase shifts in those channels which
were used in the fit at N3LO, namely S-, P, and D-waves and the mixing angles ε1 and ε2. As a test of our approach,
we first apply it to the CD-Bonn potential of Ref. [81]. The resulting values for χ2/datum clearly indicate that this
potential provides a very good description of both the np and pp phase shifts of the NPWA in the whole energy
range. Notice that the CD-Bonn potential was fitted to a considerably larger database as compared to the NPWA.
For the Idaho N3LO potentials of Ref. [2], the χ2/datum appears to be somewhat higher, especially for the version
with the cutoff Λ = 600 MeV. Notice that we did not include the pp 1S0 phase shift when calculated the χ2/datum
for the Idaho N3LO potentials. This is because the authors of Ref. [2] employed a more elaborated treatment of IB
corrections as compared to the NPWA. This is especially important for the splitting between the pp and np 1S0 phase
shifts and would result in a very large χ2/datum if the pp 1S0 phase would be included. It is interesting to compare
these findings with χ2/datum for the reproduction of the real data. The values quoted in Ref. [81] for the CD-Bonn
potential, namely χ2/datum = 1.02 for np and χ2/datum = 1.01 for pp data below 350 MeV and in Ref. [2] for the
two versions of the Idaho potentials, namely χ2/datum = 1.1-1.3 for np and χ2/datum = 1.5-2.1 for pp data below
290 MeV, show clearly the same qualitative trend. On the other hand, it is clear that χ2/datum employed in our
analysis is a much more sensitive quantity and the values of χ2/datum ∼ 5 do still correspond to accurate description
of real data.

7 There is no obvious relation between χ2/datum for the description of NPWA phase shifts and that for the description of real data. In
particular, our simplistic approach does not take into account the fact that peripheral partial waves are less important for the description
of low-energy observables.
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TABLE IV: χ2/datum for the description of the Nijmegen np and pp phase shifts [41] as described in the text at different
orders in the chiral expansion for the cutoff R = 0.9 fm. Only those channels are included which have been used in the N3LO
fits, namely the S-, P- and D-waves and the mixing angles ε1 and ε2.

Elab bin LO NLO N2LO N3LO

neutron-proton phase shifts

0–100 360 31 4.5 0.7

0–200 480 63 21 0.7

proton-proton phase shifts

0–100 5750 102 15 0.8

0–200 9150 560 130 0.7

The results for χ2/datum for the improved chiral potential of the present work at different values of the cutoff R are
listed in the last five columns of Table III. Given that the softest cutoff R = 1.2 fm corresponds to the momentum-space
regulator of Λ ∼ 330 MeV, the large values of χ2/datum for this cutoff in the whole energy range of Elab = 0−300 MeV
simply reflect the feature that the potential is used at energies beyond its applicability range. The same applies, to
a lesser extent, to the cutoff R = 1.1 fm which corresponds to the momentum-space cutoff of Λ ∼ 360 MeV. As
expected, decreasing the value of the coordinate-space cutoff R leads to a better description of the phase shifts. The
improvement stops for the hardest considered cutoff of R = 0.8 fm. Notice that the corresponding momentum cutoff
Λ ∼ 500 MeV is considerably larger than the one found in Ref. [22], where the TPEP was neglected. Our findings
thus confirm the importance of the two-pion exchange, see also Refs. [73, 91] for a related discussion. Altogether, the
description of the np and pp phase shifts based on the improved N3LO interactions is excellent for energies below
200 MeV and, for the optimal cutoff choice of R = 0.9 fm, even up to Elab = 300 MeV.

It is also interesting to compare the reproduction of the Nijmegen phase shifts at different orders in the chiral expansion.
In Table IV we show the corresponding values of χ2/datum for the cutoff R = 0.9 fm. The observed pattern provides
yet another indication that the chiral expansion for the nuclear force converges well, see also Fig. 3. It is especially
comforting to see the improvement when going from NLO to N2LO which is entirely due to the subleading TPEP.
Notice that the number of adjustable parameters is the same at NLO and N2LO. Last but not least, our results seem
to support the validity of Weinberg’s power counting and do not indicate the need for its modification as suggested
e.g. in Refs. [23–25].

V. CUTOFF DEPENDENCE

We now address in some detail the residual cutoff dependence of our results. As explained at the beginning of
section III, the dependence of observables on the cutoff R is not completely removed in our calculations, see however
Ref. [28] for an alternative renormalizable approach. The residual cutoff dependence can be viewed as an estimation
of effects of higher-order contact interactions beyond the truncation level of the potential, see, however, the discussion
in section VII. One, therefore, expects the residual cutoff dependence to reduce when going from LO to NLO/N2LO
and from NLO/N2LO to N3LO/N4LO. On the other hand, the residual cutoff dependence at chiral orders NLO and
N2LO as well as N3LO and N4LO is expected to be of the same size. In Fig. 4 we compare the cutoff dependence of
the S-, P- and D-wave phase shifts and the mixing angles ε1 and ε2 at N2LO and N3LO. The cutoff dependence at
N3LO appears to be very weak in all channels used in the fit. In particular, it is considerably weaker than the one
resulting from our N3LO potential [1] where a non-local exponential regulator was employed for the OPEP, TPEP
and the contact interactions. The new regularization scheme described in section III shows a superior performance at
higher energies and produces only a small amount of artefacts (i.e. the residual cutoff dependence) in the considered
energy range.

To get more insights into the residual cutoff dependence of phase shift δ in a given channel, we follow the lines of
Ref. [92] and plot in Fig. 5 the quantity |1 − cot δR1

(k)/ cot δR2
(k)|, where R1 and R2 are two different values of

the cutoff, as function of the cms momentum k. Specifically, we choose R1 = 0.9 fm and R2 = 1.0 fm and restrict
ourselves to the np 1S0, 3S1, 3P1 and 3P2 partial waves which may serve as representative examples. First, the
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FIG. 4: Cutoff dependence of of the phase shifts calculated at N2LO (left panel) and N3LO (right panel). Dotted, dashed,
dashed-dotted, solid and dashed-double-dotted lines show the results obtained with the cutoffs R = 1.2 fm, R = 1.1 fm,
R = 1.0 fm, R = 0.9 fm and R = 0.8 fm, respectively. Only those partial waves are shown which have been used in the fits at
N3LO. Solid dots and open triangles correspond to the results of the NPWA [41] and the GWU single-energy np partial wave
analysis [89].

resulting error plots demonstrate a very similar cutoff dependence at NLO and N2LO which is to be expected based
on general arguments as discussed above. In addition, one observes that the cutoff dependence reduces significantly in
the whole range of momenta when going from LO to NLO/N2LO and from NLO/N2LO to N3LO/N4LO. Notice that
the appearance of dips in the plots at values of k where the function 1− cot δR1

(k)/ cot δR2
(k) changes its sign has no

significance and should be ignored. Also, the structures seen in the 3S1 partial wave for k ∼ 90 MeV and k ∼ 400 MeV
(1S0 partial wave for k ∼ 350 . . . 400 MeV) simply reflect the feature that cot(π/2) = 0 (cot(0) = ∞) and should be
ignored, too. Concerning the slope of the curves at different orders, the error plots indicate the appearance of two
different regimes: at low momenta well below the pion mass, the slope does not change significantly from order to
order and the curves are nearly horizontal. This is a qualitatively similar pattern to the one reported in Ref. [92]. To
understand this feature, we recall that chiral expansion of the nuclear force is actually a double expansion in powers
of momenta and the pion mass Mπ, see Eq. (2.1). At low momenta, we expect the corrections to be dominated by
powers of Mπ/Λb and, therefore, to be nearly independent on momenta. On the other hand, at momenta above the
pion mass, one may expect the corrections to be dominated by powers of k/Λb. The increase of the slope when going
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FIG. 5: Error plots for np scattering in the 1S0, 3S1, 3P1 and 3P2 partial waves as explained in the text. Dotted, dashed (color
online: brown), dashed-dotted (color online: blue) and solid (color online: red) lines show the results at LO, NLO, N2LO and
N3LO, respectively.

from LO to NLO/N2LO and from NLO/N2LO to N3LO can be viewed as a self-consistency check of the calculation
and indicates that the theory is properly renormalized, see Refs. [22, 93] for more details. Finally, we read off from
the plots that the breakdown scale Λb at N3LO, i.e. the momenta at which the N3LO curves cross the ones of lower
orders, is about ∼ 500 MeV for S-waves and even higher for P-waves. These observations are in line with our previous
findings and, in particular, with the size of the LECs accompanying the corresponding contact interactions which are
listed in Table II. We will use Λb = 400 . . . 600 MeV, depending on the cutoff R, in our estimation of the theoretical
uncertainties in section VII.

VI. DEUTERON PROPERTIES

We now turn to the deuteron properties. First, as already emphasized in section IV, we stress that we used the
binding energy Bd = 2.224575 MeV [94] to constrain the fit. While this choice differs from our early work [1], it is
actually the standard procedure for all high-precision phenomenological potentials such as the Nijmegen I, II, Reid93,
CD-Bonn and AV18 one. Also the N3LO potential of Ref. [2] was tuned to reproduce the experimental value of the
deuteron binding energy. We anticipate that relaxing this condition in the fits would have little impact on few-nucleon
observables.

In Table V, we collect various deuteron properties at N3LO using different values of the cutoff R in comparison with
the results based on the CD-Bonn [81], N3LO Idaho (500) [2] and N3LO (550/600) [1] potentials and with empirical
numbers. In all cases with the exception of the N3LO Idaho potential, the deuteron binding energy is calculated
based on relativistic kinematics, see Eq. (A.4) and Refs. [1, 81] for more details. We remind the reader that the
asymptotic S state normalization AS and the asymptotic D/S state ratio η are observable quantities which can be
extracted from the S-matrix at the deuteron pole by means of analytic continuation, see [1] and references therein.
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TABLE V: Deuteron binding energy Bd, asymptotic S state normalization AS , asymptotic D/S state ratio η, radius rd and
quadrupole moment Q predicted by various NN potential in comparison with empirical information. Also shown is the D-state
probability PD. Notice that rd and Qd are calculated without taking into account meson-exchange current contributions and
relativistic corrections.

CD-Bonn, Idaho N3LO N3LO of [1] — improved chiral potentials at N3LO, this work — Empirical

[81] (500), [2] (550/600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

Bd (MeV) 2.2246? 2.2246? 2.2196 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.224575(9)

AS (fm−1/2) 0.8846 0.8843 0.8820 0.8843 0.8845 0.8845 0.8846 0.8846 0.8846(9)

η 0.0256 0.0256 0.0254 0.0255 0.0255 0.0256 0.0256 0.0256 0.0256(4)

rd (fm) 1.966 1.975 1.977 1.970 1.972 1.975 1.979 1.982 1.97535(85)

Q (fm2) 0.270 0.275 0.266 0.268 0.271 0.275 0.279 0.283 0.2859(3)

PD (%) 4.85 4.51 3.28 3.78 4.19 4.77 5.21 5.58

?The deuteron binding energy has been taken as input in the fit.

The empirical values for these quantities quoted in Table V are taken from Refs. [95, 96]. For the deuteron radius
rd, the quoted value corresponds to the so-called deuteron structure radius which is defined as a square root of the
difference of the deuteron, proton and neutron mean square charge radii and is taken from Ref. [97]. It agrees well
with the earlier result of rd = 1.971(5) fm reported in Ref. [98]. For the quadrupole moment Q, the experimental
value given in Table V is from Ref. [99].

Our predictions for AS , η and rd are in excellent agreement with the empirical numbers. Notice that our calculation
of rd and Q does not take into account relativistic and exchange current contributions. For the radius rd, the
corresponding corrections to r2d were estimated in Ref. [100] to give 0.014 fm2 while other calculations quote even
smaller numbers. Thus, neglecting these contributions would affect the results for rd at most at the level of 0.2%
which is below the residual cutoff variation ∼ 0.6% for this quantity at N3LO.

For the quadrupole moment, our predictions underestimate the experimental value similarly to what is observed for
other modern phenomenological potentials as well as for the chiral N3LO potentials of Refs. [1, 2]. Notice that the
amount of underestimation is largest for the hardest cutoff R = 0.8 fm and reduces strongly for the softest cutoff
R = 1.2 fm. We also emphasize that relativistic and meson exchange current corrections, which are not included in
our predictions, were estimated to increase the value of Q by the amount of 0.010 fm2 [81] based on the Bonn one-boson
exchange model. This would bring our predictions for the quadrupole moment in agreement with the experimental
value. This conclusion is also fully in line with the results of Ref. [101], where the contributions from the relativistic
corrections and one-pion exchange two-body charge operator were estimated to be ∆Q ' 0.008 fm2, see also Ref. [102]
for a related recent work. Adding this correction to our prediction yields Q = 0.278 . . . 0.291 fm2 in agreement with
experiment. The residual cutoff dependence of Q is to be removed by the leading short-range two-body current. Its
required contribution of the order of ∼ 2 . . . 3% is in agreement with the expected natural size of the corresponding
LEC [101].

It is also instructive to address convergence of the chiral expansion for the deuteron properties by looking at the
predictions at different orders which are listed in Table VI. Here we restrict ourselves to a single cutoff choice, namely
R = 0.9 fm. One observes a good convergence of the chiral expansion for all listed quantities with the exception of
PD which is well known to be not observable.

Finally, we display in Fig. 6 the deuteron wave functions calculated using the N3LO potential of the present work
in comparison with those based on the CD-Bonn and the N3LO potentials of Refs. [1, 2]. As a consequence of the
employed regulator, the wave functions based on the improved chiral potentials are free from the oscillatory distortions
observed in the case of the N3LO potentials of Refs. [1, 2] and are in a very good agreement with each other and with
the wave functions of the CD-Bonn potential at distances larger than r ∼ 2 . . . 3 fm. Notice that momentum-space
deuteron wave functions of the N3LO potentials of Refs. [1, 2] show significant deviations from the wave functions
based on the phenomenological potentials at p ∼ 400 MeV. These deviations were found in Ref. [103] to be responsible
for strong distortions in the predicted shape of the neutron-deuteron differential cross section around the minimum
at the energy of EN, lab = 200 MeV. It would be interesting to investigate whether this problem still persists for the
improved chiral potentials. Work along these lines is in progress.
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TABLE VI: Deuteron properties at various orders in the chiral expansion for the cutoff R = 0.9 fm in comparison with empirical
values. For notation see Table V.

LO NLO N2LO N3LO Empirical

Bd (MeV) 2.0235 2.1987 2.2311 2.2246? 2.224575(9)

AS (fm−1/2) 0.8333 0.8772 0.8865 0.8845 0.8846(9)

η 0.0212 0.0256 0.0256 0.0255 0.0256(4)

rd (fm) 1.990 1.968 1.966 1.972 1.97535(85)

Q (fm2) 0.230 0.273 0.270 0.271 0.2859(3)

PD (%) 2.54 4.73 4.50 4.19

?The deuteron binding energy has been taken as input in the fit.
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FIG. 6: Deuteron wave functions in coordinate space. Thin (color online: red) dotted, dashed, dashed-dotted, solid and dashed-
double-dotted lines show the results obtained using the N3LO potentials of this work with the cutoffs R = 1.2 fm, R = 1.1 fm,
R = 1.0 fm, R = 0.9 fm and R = 0.8 fm, respectively. Thick (color online: green) dotted, (color online: light brown) dashed and
(color online: blue) solid lines refer to the wave functions of the Idaho (500) N3LO potential of Ref. [2], the N3LO (550/600)
potential of Ref. [1] and the CD-Bonn potential [81].

VII. ESTIMATION OF THE THEORETICAL UNCERTAINTY

We now turn to the discussion of uncertainty quantification in nuclear chiral EFT calculations, see Ref. [93] for a recent
paper on this topic. Here and in what follows, our considerations are restricted to few-nucleon systems, for which
the quantum mechanical A-body problem is assumed to be (numerically) exactly solvable. This certainly applies at
least to systems with A ≤ 4. We will, therefore, not address uncertainties associated with methods for calculating
observables.

There are various sources of uncertainties in nuclear Hamiltonian derived in the framework of chiral EFT which
include, see also Ref. [93]:

1. Systematic uncertainty due to truncation of the chiral expansion at a given order;

2. Uncertainty in the knowledge of πN LECs which govern the long-range part of the nuclear force;

3. Uncertainty in the determination of LECs accompanying contact interactions;

4. Uncertainties in the experimental data or, in our case, the NPWA used to determine the LECs.
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In addition, results of the calculations are expected to show some sensitivity on the employed regularization framework.
This issue will be addressed at the end of this section. Here and in what follows, we will primarily concentrate on
the first item which, at the curent level of calculations, we believe to be the dominant source of uncertainty. We
anticipate, based on the results reported in Refs. [73–75, 77, 78], that the impact of the uncertainties in πN LECs
and, especially in the order-Q2 ones, i.e. the ci, on the calculated NN observables might be significant. This issue
should be investigated in a careful and systematic way in the future. A particularly promising approach to determine
the values of the πN LECs would be to perform a simultaneous investigation of πN scattering and the reaction
πN → ππN , see Ref. [104, 105] on the chiral EFT treatment of this process. Such an analysis goes beyond the scope
of this work and is reserved for a future investigation.

The uncertainty in the determination of NN contact interaction is clearly affected by the employed fit procedure such
as, in particular, the choice of energy range and weights adopted in the calculation of χ2. Following our early work
of [1], we used fixed ranges in energies to tune the contact interactions as described in section IV and checked in
each case the stability of our results with respect to their variations. We did not employ additional weights in the
χ2 to account for the expected increase of the theoretical uncertainty at higher energies, see Ref. [106] for a different
approach. Both of these issues can, in principle, be addressed in a systematic way within a Bayesian framework
[88, 93]. This topic is postponed for a future study. Finally, statistical uncertainties for the LECs accompanying NN
contact interactions at N2LO were studied in Ref. [77]. Their impact on selected pp and np phase shifts can be found
in Table 5 of that work and appears to be negligibly small compared to the systematic theoretical uncertainty to be
discussed below.

Last but not least, there are uncertainties associated with experimental data or, in our case, with the results of NPWA
used as input in our calculation, see section IV for more details. In particular, we emphasize that the data base used
in the NPWA of 1993 has been largely extended since that time. Specifically, the final database below Elab = 350 MeV
used in the NPWA involved 1787 pp and 2514 np data. On the other hand, the database used e.g. in the construction
of the CD Bonn potential [81] consists of 2932 pp and 3058 np data. We expect that increasing the experimental
database should have little impact on the resulting phase shifts at the level of the systematic uncertainty of the NPWA
assumed in our work as described in section IV. For example, as shown in Table III, np and pp phase shifts obtained
using the CD-Bonn potential, which is constructed using the extended database, are in a very good agreement with the
NPWA. Notice, however, that pp and np phase shifts and mixing angles obtained in the recent coarse-grained potential
analysis of NN scattering of Ref. [107] do differ significantly from the ones of the CD Bonn potential and from those
of the NPWA and the Nijmegen I, II and Reid 93 potentials. This is quite surprising given that this analysis employs
essentially the same pp database as the one used in the construction of the CD-Bonn potential (while the np database
with 3717 data is somewhat larger). Consequently, using the phase shifts and mixing angles reported in that work
results in fairly large values of χ2/datum defined in section IV, namely χ2/datum = 4 . . . 8. Unfortunately, neither
the NPWA [41] nor the coarse grained analysis of Ref. [107] provide any estimation of the systematic uncertainties so
that the origin and interpretation of these discrepancies remain unclear. We do not include the results of Ref. [107]
in our analysis.

We now address the systematic uncertainty of our calculation due to the truncation of the chiral expansion. To the
order we are working, we expect it to be still the dominant source of the theoretical uncertainty. Unfortunately,
most of the available calculations do not address this source of uncertainty or at best estimate it by means of a
residual cutoff dependence, see e.g. [1, 7, 31] and references therein. Such an approach, however, is well known to
suffer from several deficiencies. First of all, the resulting uncertainty depends on the employed cutoff range and,
therefore, shows some arbitrariness. Secondly, as already pointed out before, the residual cutoff dependence measures
the contributions due to neglected contact interactions which appear only at even orders of the momentum expansion
of the NN Hamiltonian. While the residual cutoff dependence of a given NN observable at LO does indeed measure
the size of NLO corrections, it reflects the sensitivity to the order-Q4 (i.e. N3LO) contact interactions at both NLO
(order-Q2) and N2LO (order-Q3). For this reason, the uncertainty at NLO and similarly at N3LO estimated in this
way may be expected to be underestimated. On the other hand, given that the range of the available momentum-
space cutoffs is rather limited from above both for the conceptual and practical [87] reasons, see also the discussion
in section III, one is forced to employ soft cutoffs in order to have a cutoff range sufficient for an estimation of the
theoretical uncertainty. Such a procedure is, however, likely to induce large finite-cutoff artefacts and, therefore, to
unnecessarily overestimate the true theoretical uncertainty.

To illustrate these features, consider the chiral expansion of the np total cross section at the energies of Elab = 50, 96,
143 and 200 MeV based on the interactions introduced in the previous sections as shown in Fig. 7. We also show in this
figure by the horizontal band the result of the NPWA with the assumed theoretical uncertainty and the experimental
data of Ref. [108]. The convergence pattern for the total cross section depicted in Fig. 7 shows the general features one



22

 160

 170

 180

 190

LO NLO N2LO N3LO Exp

�tot [mb],  Elab=50 MeV

 60

 70

 80

 90

 100

LO NLO N2LO N3LO Exp

�tot [mb],  Elab=96 MeV

 30

 40

 50

 60

 70

LO NLO N2LO N3LO Exp

�tot [mb],  Elab=143 MeV

 20

 30

 40

 50

 60

LO NLO N2LO N3LO Exp

�tot [mb],  Elab=200 MeV

FIG. 7: Order-by-order convergence of the chiral expansion for the np total cross section at energies of Elab = 50 MeV,
Elab = 96 MeV and Elab = 143 MeV and Elab = 200 MeV. Dotted (color online: light brown), dashed (color online: green),
dashed-dotted (color online: blue), solid (color online: red) and dashed-double-dotted (color online: pink) lines show the results
based on the cutoff R = 1.2 fm, R = 1.1 fm, R = 1.0 fm, R = 0.9 fm and R = 0.8 fm, respectively. The horizontal band refers
to the result of the NPWA with the uncertainty estimated by means of deviations from the results based on the Nijmegen I, II
and Reid 93 potentials as explained in the text. Also shown are experimental data of Ref. [108].

expects to see in chiral EFT: one observes fast convergence at the lowest energy which becomes increasingly slower at
higher energies. Notice that the large size of higher-order corrections at the energy of Elab = 200 MeV relative to the
leading ones is actually due to the NLO contributions being smaller than expected as will be shown below. One also
observes another feature which persists at all energies, namely that the size of the N2LO corrections decreases with
increasing the values of R. Given that the only new ingredient in the potential at N2LO is the subleading TPEP, this
pattern simply reflects that the TPEP is stronger cut off for soft cutoff choices.

The results shown in Fig. 7 provide a good illustration of the above mentioned issues associated with the estimation
of the theoretical uncertainty by means of a cutoff variation. In particular, while the spread in the predictions
does, in general, decrease with the chiral order, it remains nearly the same at NLO and N2LO. Furthermore, at
NLO, it misses (albeit barely) the result of the NPWA which is consistent with the expected underestimation of the
theoretical uncertainty at this order. On the other hand, while the spread in the predictions based on different cutoffs
is roughly consistent with the deviations between the theory and the NPWA result for the lowest energy, it appears
to significantly overestimate the uncertainty of the calculation based on lower (i.e. harder) cutoffs R if one estimates
it via the deviation between the theory and the NPWA results. This behavior at high energy suggests that the spread
between the predictions for different values of R is actually governed by artefacts associated with too soft cutoffs
and does not reflect the true theoretical uncertainty of chiral EFT. We, therefore, conclude that while being a useful
consistency check of the calculation, cutoff variation in the employed range does not provide a reliable approach for
estimating the theoretical uncertainty. As we will show below, estimating the uncertainty via the expected size of
higher-order corrections, as it is common e.g. in the Goldstone boson and single-baryon sectors of chiral perturbation
theory, provides a natural and more reliable approach which, in addition, has an advantage to be applicable at any
fixed value of the cutoff R.

For a given observable X(p), where p is the cms momentum corresponding to the considered energy, the expansion
parameter in chiral EFT is given by

Q = max

(
p

Λb
,
Mπ

Λb

)
, (7.33)

where Λb is the breakdown scale. Based on the results presented in sections IV and V, we will use Λb = 600 MeV
for the cutoffs R = 0.8, 0.9 and 1.0 fm, Λb = 500 MeV for R = 1.1 fm and Λb = 400 MeV for R = 1.2 to account for
the increasing amount of cutoff artefacts which is reflected by the larger values of χ2/datum in Table III. We have
verified the consistency of the choice Λb = 400 MeV for the softest cutoff R = 1.2 fm by making the error plot similar
to the one shown in Fig. 5. We can now confront the expected size of corrections to the np total cross section at
different orders in the chiral expansion with the result of the actual calculations. In particular, for the cutoff choice
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of R = 0.9 fm, we obtain

σtot(50 MeV) = 183.6Q0 − 17.1Q2 (∼12) + 0.5Q3 (∼3) − 0.2Q4 (∼0.8) = 166.8 mb ,

σtot(96 MeV) = 84.8Q0 − 9.7Q2 (∼11) + 3.2Q3 (∼4) − 0.8Q4 (∼1.3) = 77.5 mb ,

σtot(143 MeV) = 52.5Q0 − 3.4Q2 (∼10) + 5.1Q3 (∼4) − 0.5Q4 (∼1.8) = 53.7 mb ,

σtot(200 MeV) = 34.9Q0 + 1.0Q2 (∼9) + 6.7Q3 (∼5) + 0.6Q4 (∼2.4) = 43.2 mb , (7.34)

see also Fig. 7, while for the softest cutoff R = 1.2 fm we find

σtot(50 MeV) = 159.4Q0 + 5.4Q2 (∼23) + 0.8Q3 (∼9) + 1.6Q4 (∼3) = 167.2 mb ,

σtot(96 MeV) = 60.2Q0 + 8.7Q2 (∼17) + 2.4Q3 (∼9) + 6.8Q4 (∼5) = 78.1 mb ,

σtot(143 MeV) = 30.8Q0 − 7.8Q2 (∼13) + 2.8Q3 (∼8) + 11.2Q4 (∼5) = 52.6 mb ,

σtot(200 MeV) = 17.2Q0 + 5.3Q2 (∼10) + 2.5Q3 (∼8) + 13.6Q4 (∼6) = 38.6 mb . (7.35)

The expected size of NLO, N2LO and N3LO corrections indicated in the subscripts is estimated as (p/Λb)
2, (p/Λb)

3

and (p/Λb)
4 times the LO result in each particular case. The cms momenta corresponding to the energies of Elab = 50,

96, 143 and 200 MeV are p = 153 MeV, p = 212 MeV, p = 259 MeV and p = 307 MeV, respectively. Generally, the
estimated size of corrections at various orders appears to be in a reasonable agreement with their actual size. The
N3LO corrections are smaller than expected for R = 0.9 fm but turn out to be large for the cutoff R = 1.2 fm at
higher energies. We emphasize that it might be too optimistic to expect a convergent expansion at the energies of
Elab = 143 and 200 MeV for the softest cutoff since the expansion parameter Q in these cases is larger than 0.5. Also
the fact that the LO contribution at the highest energy for R = 1.2 fm amounts to less than half of the total result
suggests that this cutoff is not applicable at such an energy. We also observe an interesting feature that the EFT
expansion actually converges faster than expected at low energy when soft cutoffs are employed, see the first line in
Eq. (7.35) and the left plot in Fig. 7. This behavior becomes even more pronounced at lower energies. In fact, when
reducing the cutoff R, we actually continuously integrate out pion physics, and the resulting theory would gradually
turn into pionless EFT if we would further soften the cutoff. At very low energies with momenta well below the pion
mass, pionless EFT, which correspond to the expansion in p/Mπ, may actually be more efficient than the expansion
in chiral EFT which is controlled by the parameter Mπ/Λb.

Having tested our estimation for the breakdown scale Λb in the results for the np total cross section at various
chiral orders, we are now in the position to estimate the theoretical uncertainty of our results at N3LO. To be on

a conservative side, we will ascribe the uncertainty ∆XN3LO(p) of our N3LO prediction XN3LO(p) for an observable
X(p) via

∆XN3LO(p) = max

(
Q5 ×

∣∣∣XLO(p)
∣∣∣, Q3 ×

∣∣∣XLO(p)−XNLO(p)
∣∣∣, Q2 ×

∣∣∣XNLO(p)−XN2LO(p)
∣∣∣,

Q×
∣∣∣XN2LO(p)−XN3LO(p)

∣∣∣) , (7.36)

where the expansion parameter Q is given by Eq. (7.33) and the scale Λb is chosen dependent of the cutoff R as
discussed above. We emphasize that such a simple estimation of the theoretical uncertainty does not provide a
statistical interpretation. This can be improved e.g. by employing a Bayesian framework [88, 93] and performing
marginalization over higher-order corrections. We postpone such an analysis for a future study and will adopt the
simplified treatment introduced above here and in what follows. We will further impose an additional constraint for
the theoretical uncertainties at NLO and N2LO by requiring them to have at least the size of the actual higher-order
contributions. We emphasize that the above way of estimating the uncertainty does not rely on cutoff variation and
can be carried out for any given value of R.

Our results for the np total cross section at various orders in the chiral expansion and for various choices of the cutoff
R are shown in Fig. 8. Notice that at the smallest energy, we observe deviations between our N3LO results and the
NPWA which are likely caused by the employed treatment of IB corrections in the 1S0 partial way. In particular, we
chose to determine the LECs C1S0, D1

1S0 and D2
1S0 solely from the pp phase shift and adjusted C̃np

1S0 to reproduce
the np scattering length. The splitting between the np and pp 1S0 phase shifts thus comes out as a prediction. It
is therefore not surprising that the results for the np 1S0 phase shifts show some deviations from the NPWA. These
deviations are expected to be largely reduced at next-higher order in the chiral expansion.



24

 160

 165

 170

 175

Bands R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=50 MeV

 65

 70

 75

 80

 85

Bands R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=96 MeV

 30

 40

 50

 60

 70

Bands R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=143 MeV

 20

 30

 40

 50

 60

Bands R1 R2 R3 R4 R5 Exp

� t
ot

 [
m

b
]

Elab=200 MeV

FIG. 8: Predictions for the np total cross section based on the improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green) and N3LO (filled triangles, color online: blue) at the energies of
Elab = 50 MeV, Elab = 96 MeV, Elab = 143 MeV and Elab = 200 MeV for the different choices of the cutoff: R1 = 0.8 fm,
R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm, R5 = 1.2 fm. Vertical boxes depict the cutoff dependence of the theoretical predictions
at different orders. The horizontal band refers to the result of the NPWA with the uncertainty estimated by means of deviations
from the results based on the Nijmegen I, II and Reid 93 potentials as explained in the text. Also shown are experimental data
of Ref. [108].

In all cases shown in Fig. 8, the predicted results calculated using different values of the cutoff R agree with each
other within the theoretical uncertainty. It is comforting to see that our procedure for estimating the uncertainty
yields the pattern which is qualitatively similar to the one found based on the χ2/datum for the description of the
Nijmegen np and pp phase shifts as shown in Table III. In particular, we see that the most accurate results at the
lowest energy are achieved with the cutoff R = 1.0 fm (with the uncertainty for the R = 0.9 fm case being of a
comparable size). At higher energies, the cutoff R = 0.9 fm clearly provides the most accurate choice. We also observe
that at the lowest energy, the cutoff variation does considerably underestimate the theoretical uncertainty at NLO
and, to a lesser extent, at N3LO as expected based on the arguments given above. This pattern changes at higher
energies. For example, at Elab = 200 MeV, the cutoff bands at NLO and N3LO appear to be of the same size as the
estimated uncertainty based on the optimal cutoff R = 0.9 fm. It is actually a combination of two effects which work
against each other which results in a “reasonable” estimation of the NLO and N3LO uncertainties at higher energies
by the cutoff bands: on the one hand, as already mentioned above, cutoff bands measure the impact of the order-Q4

and order-Q6 contact interactions and, therefore, underestimate the uncertainty at NLO and N3LO. On the other
hand, at higher energies, cutoff bands get increased due to using softer values of R as it is clearly visible from Fig. 8.
This conclusion is further supported by the N2LO cutoff band which strongly overestimates the estimated uncertainty
in the case of R = 0.9 fm. We also learn from Fig. 8 that N2LO results for the total cross section for the cutoffs
of R = 0.9 fm and R = 1.0 fm have the accuracy which is comparable to N3LO calculations with the softest cutoff
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cutoff of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cutoff bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cutoff artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cutoff
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cutoff dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles ε1 and
ε2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±∆δ(Elab) and ±∆ε(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at different energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50 MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cutoff choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab ∼ 100 MeV and still provides accurate description of
the data at energies of the order of Elab ∼ 200 MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab ∼ 100 MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to
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FIG. 10: Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ, vector analyzing
power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory energy of
Elab = 50 MeV. The light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands
depict the estimated theoretical uncertainties at NLO, N2LO and N3LO, respectively. Open circles refer to the result of the
NPWA. The upper (lower) panel shows the results based on the optimal (softest) cutoff choice of R = 0.9 fm (R = 1.2 fm).
Data for the cross section are taken from [109, 110] and for the analyzing power from [111–115].

quantify this dependence, we performed fits using the cutoff R = 1.0 fm but employing different values of the exponent
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FIG. 11: Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ, vector analyzing
power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory energy of
Elab = 96 MeV calculated using on the cutoff of R = 0.9 fm. The light- (color online: yellow), medium- (color-online: green) and
dark- (color-online: blue) shaded bands depict the estimated theoretical uncertainties at NLO, N2LO and N3LO, respectively.
Open circles refer to the result of the NPWA. Data for the cross section are taken from [116–118]. Data for the analyzing power
are at Elab = 95 MeV and taken from [119].

in Eq. (3.27), namely n = 5 and n = 7. In Table VII, we show the resulting phase shifts in the 3S1 and pp 1S0, 3P0,
3P1 and 3P2 partial waves at the energies of 10, 100 and 200 MeV as representative examples. Clearly, the observed
spread in the results is negligibly small compared to the estimated accuracy of our calculations. Furthermore, as
already pointed out in section III, the employed local regularization of the pion-exchange contributions makes the
spectral function regularization obsolet. In particular, phase shifts resulting from fits using different values of the SFR
cutoff Λ = 1 GeV, Λ = 1.5 GeV and Λ = 2 GeV, see the last three columns in Table VII, are nearly indistinguishable
from each other and from the DR result corresponding to Λ =∞ and shown in the third column of this Table.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have presented a new generation of NN potentials derived in chiral EFT up to N3LO. The new chiral
forces offer a number of substantial improvements as compared to the widely used N3LO potentials of Refs. [1, 2]
introduced a decade ago. First of all, we employ a local regularization scheme for the pion exchange contributions
which, differently to the standard nonlocal regularization applied e.g. in Refs. [1, 2], does not distort the low-energy
analytic structure of the amplitude and, as a consequence, leads to a better description of phase shifts and experimental
data. The employed regulator, by construction, removes the short-range part of the chiral two-pion exchange and thus
makes the additional spectral function regularization used in the potential of Ref. [1] obsolete. This is a particularly
welcome feature given that the expressions for the three-nucleon force at N3LO and N4LO are only available in the
framework of dimensional regularization. Further, in contrast to the earlier studies of Refs. [1, 2], we have taken all
pion-nucleon LECs and especially the subleading LECs ci from pion-nucleon scattering without any fine tuning. The
LECs accompanying NN contact interactions were determined by fits to the Nijmegen phase shifts and mixing angles
for five different values of the coordinate-space cutoff R chosen in the range of R = 0.8 . . . 1.2 fm and appear to be of
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FIG. 12: Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ, vector analyzing
power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory energy of
Elab = 143 MeV calculated using on the cutoff of R = 0.9 fm. The light- (color online: yellow), medium- (color-online:
green) and dark- (color-online: blue) shaded bands depict the estimated theoretical uncertainties at NLO, N2LO and N3LO,
respectively. Open circles refer to the result of the NPWA. Data for the cross section are at Elab = 142.8 MeV and taken from
[120] and for the analyzing power from [121].

natural size in all cases. The new N3LO potentials allow for an excellent description of the Nijmegen np and pp phase
shifts at energies below 200 MeV and, for the cutoff choices of R = 0.9 fm and R = 1.0 fm, even up to Elab = 300 MeV.
Furthermore, the deuteron properties are accurately described. Moreover, the deuteron wave functions are free from
distortions at distances larger than r ∼ 2 . . . 3 fm which appear for the N3LO potentials of Refs. [1, 2] due to the
employed form of the regulator. We found that the description of the Nijmegen phase shifts improves substantially
when going from LO to NLO, from NLO to N2LO and from N2LO to N3LO as one expects for a convergent expansion.
It is worth to emphasize in this connection that the short range part of the NLO and N2LO potentials involves the
same set of operators. Our findings therefore provide yet another evidence of the subleading two-pion exchange which
was also observed in earlier studies. As an important consistency check of our approach, we have studied the residual
cutoff dependence of phase shifts at different orders in the chiral expansion. We found, in particular, that the cutoff
dependence is strongly reduced at N3LO compared to N2LO in the whole considered range of energies.

We have also addressed the issue of the uncertainty of our results due to the truncation of the chiral expansion at a
given order. In particular, we have argued that the standard procedure for error estimation based on a cutoff variation
is not reliable and proposed a simple alternative approach by directly estimating the expected size of higher-order
contributions at a given energy. Such a procedure has the advantage of being applicable for any fixed value of the cutoff
so that calculations based on different cutoffs can be used to provide additional consistency checks. Furthermore,
disentangling the error analysis from the cutoff variation allows one to avoid an unnecessary increase of uncertainty
due to softening the interaction. Notice that the versions of the potential corresponding to soft choices of the cutoff
R may still be useful for certain kinds of applications including, in particular, many-body calculations. We have
applied this approach to the total np cross section at several energies and have verified that the results at different
chiral orders and for different values of the cutoff are indeed consistent with each other. We have furthermore used
this method to quantify the theoretical uncertainty in the description of the np phase shifts as well as differential
cross sections and selected polarization observables in np scattering. In particular, we found the N3LO results for np
scattering to be very accurate at energies below ∼ 100 MeV with the corresponding error bands being barely visible
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FIG. 13: Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ, vector analyzing
power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory energy of
Elab = 200 MeV calculated using on the cutoff of R = 0.9 fm. The light- (color online: yellow), medium- (color-online:
green) and dark- (color-online: blue) shaded bands depict the estimated theoretical uncertainties at NLO, N2LO and N3LO,
respectively. Open circles refer to the result of the NPWA. Data for the cross section are at Elab = 199 MeV from [122] and at
Elab = 200 MeV from [123]. Data for the analyzing power are at Elab = 199 MeV from [122].

and still rather accurate at the energy of Elab = 200 MeV. In all considered cases, our results agree with the ones
based on the NPWA within the estimated theoretical accuracy. This gives us additional confidence in the reliability
of the suggested way of quantifying the uncertainty. We have furthermore analyzed the uncertainties associated with
making a specific choice of the functional form of the local regulator and employing the additional spectral function
regularization of the TPEP and found them to be negligible at the level of the estimated theoretical accuracy at
N3LO.

The improved chiral potentials introduced in this work should provide an excellent starting point for applications
to few-nucleon systems. In particular, nucleon-deuteron scattering offers a natural testing ground for studying the
details of the three-nucleon force which is subject of extensive research [16]. The existing calculations based on modern
phenomenological potentials suggest that effects of the three-nucleon force in nucleon-deuteron scattering should be
small at low energy (except for certain observables like the vector analyzing power) but become clearly visible at
intermediate energies of EN, lab ∼ 70 MeV and above. It is encouraging to see that chiral EFT provides a rather
accurate description of NN scattering in this energy range. We expect a similar theoretical accuracy for nucleon-
deuteron scattering observables, but this needs to be verified via explicit calculations. Work along these lines is in
progress. For applications to medium-mass and heavy nuclei based on the continuum methods, the potentials typically
need to be softened by using the renormalization group type techniques such as e.g. the similarity renormalization
group approach, in order to make the many-body problem numerically tractable. It remains to be seen whether the
new NN potentials, which do have a substantial amount of high-momentum components due to the employed local
regulator, can be softened sufficiently without inducing a too large amount of many-body forces.

In addition to the already mentioned applications to few- and many-nucleon systems, this work should be extended
in various directions. First, the calculations should be carried out at next-higher order in the chiral expansion, see
Ref. [90] for a recent work along this line. This would, in particular, provide a nontrivial check for our estimation
of uncertainties at N3LO. Secondly, isospin-breaking effects and the role of the three-pion exchange contributions
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TABLE VII: Selected phase shifts (in degrees) calculated at N3LO using the cutoff of R = 1.0 fm with the theoretical uncertainty
determined according to Eq. (7.36) in comparison with the results of the NPWA. Also shown are N3LO fits for the same value
of R but a different functional form of the regulator with n = 5 and n = 7, see Eq. (3.27), and fits based on the spectral
function regularization with the corresponding cutoff of Λ = 1 GeV, Λ = 1.5 GeV and Λ = 2 GeV.

Lab. energy NPWA [41] our result DR, n = 5 DR, n = 7 SFR, 1.0 GeV SFR, 1.5 GeV SFR, 2.0 GeV

proton-proton 1S0 phase shift

10 MeV 55.23 55.22± 0.08 55.22 55.22 55.22 55.22 55.22

100 MeV 24.99 24.98± 0.60 24.98 24.98 24.98 24.98 24.98

200 MeV 6.55 6.56± 2.2 6.55 6.56 6.56 6.56 6.57

neutron-proton 3S1 phase shift

10 MeV 102.61 102.61± 0.07 102.61 102.61 102.61 102.61 102.61

100 MeV 43.23 43.22± 0.30 43.28 43.20 43.17 43.21 43.22

200 MeV 21.22 21.2± 1.4 21.2 21.2 21.2 21.2 21.2

proton-proton 3P0 phase shift

10 MeV 3.73 3.75± 0.04 3.75 3.75 3.75 3.75 3.75

100 MeV 9.45 9.17± 0.30 9.15 9.18 9.18 9.17 9.17

200 MeV −0.37 −0.1± 2.3 −0.1 −0.1 −0.1 −0.1 −0.1

proton-proton 3P1 phase shift

10 MeV −2.06 −2.04± 0.01 −2.04 −2.04 −2.04 −2.04 −2.04

100 MeV −13.26 −13.42± 0.17 −13.43 −13.41 −13.41 −13.42 −13.42

200 MeV −21.25 −21.2± 1.6 −21.2 −21.2 −21.2 −21.2 −21.2

proton-proton 3P2 phase shift

10 MeV 0.65 0.65± 0.01 0.66 0.65 0.65 0.65 0.65

100 MeV 11.01 11.03± 0.50 10.97 11.06 11.07 11.05 11.04

200 MeV 15.63 15.6± 1.9 15.6 15.5 15.5 15.5 15.6

should be studied in detail. Furthermore, it is important to quantify the uncertainty associated with the values of
the pion-nucleon LECs and investigate the possibility of constraining them from NN or even few-nucleon data in a
systematic way. Last but not least, it would be desirable to employ a more elaborate way of estimating the systematic
theoretical uncertainty which would allow for a statistical interpretation of the errors. Work along these lines is in
progress.
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Appendix A: Scattering amplitude in the partial wave basis

Consider two nucleons moving with momenta ~p1 and ~p2. We use relativistic kinematics for relating the energy Elab

of the two nucleons in the laboratory system to the square of the nucleon momentum ~p in the cms defined by the
condition ~p1 + ~p2 = 0. As explained in section II, the NN potentials constructed in the present work are to be used
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in the Schrödinger equation8 [
p2

mN
+ V

]
Ψ =

k2

mN
Ψ . (A.1)

where mN = mp, mN = mn and mN = 2mpmn/(mp + mn) for the pp, nn and np systems, respectively. Here and
in what follows we use for all momenta the notation of e.g. p ≡ |~p |. The relation between Elab and k2 in the above
equation is based on relativistic kinematics and reads:

• Proton–proton case:

k2 =
1

2
mpElab . (A.2)

• Neutron–neutron case:

k2 =
1

2
mnElab . (A.3)

• Neutron–proton case:

k2 =
m2
pElab(Elab + 2mn)

(mn +mp)2 + 2Elabmp
. (A.4)

The Lippmann-Schwinger equation for the off-the-energy shell T -matrix corresponding to Eq. (A.1) and projected
onto states with orbital angular momentum l, total spin s and total angular momentum j has the form

T sjl′l (p
′, p; k2) = V sjl′l (p′, p) +

∑
l′′

∫ ∞
0

dq q2 V sjl′l′′(p
′, q)

mN

k2 − q 2 + iη
T sjl′′l(q, p; k

2) , (A.5)

with η → 0+. In the uncoupled case, l is conserved. The partial wave projected potential V sjll′ (p
′, p) can be obtained

using the formulae collected in appendix B of Ref. [1]. The relation between the S- and T-matrices is given by

Ssjl′l(k) = δl′l − iπkmNT
sj
l′l (k, k; k2) . (A.6)

The phase shifts in the uncoupled cases can be obtained from the S–matrix via

S0j
jj = exp

(
2iδ0jj

)
, S1j

jj = exp
(

2iδ1jj

)
, (A.7)

where we have used the notation δsjl . Throughout, we use the so–called Stapp parametrization [124] of the S–matrix
in the coupled channels (j > 0) defined as

S =

(
S1j
j−1 j−1 S1j

j−1 j+1

S1j
j+1 j−1 S1j

j+1 j+1

)
=

(
cos (2ε) exp (2iδ1jj−1) i sin (2ε) exp (iδ1jj−1 + iδ1jj+1)

i sin (2ε) exp (iδ1jj−1 + iδ1jj+1) cos (2ε) exp (2iδ1jj+1)

)
, (A.8)

and is related to another frequently used parametrization due to Blatt and Biedenharn [125] in terms of δ̃ and ε̃ via
the following equations:

δj−1 + δj+1 = δ̃j−1 + δ̃j+1 , sin(δj−1 − δj+1) =
tan(2ε)

tan(2ε̃)
, sin(δ̃j−1 − δ̃j+1) =

sin(2ε)

sin(2ε̃)
. (A.9)

For pp scattering, the phase shifts considered in the present work are of the nuclear plus relativistic Coulomb in-
teraction with respect to relativistic Coulomb wave functions, i.e. δC1

C1+N using the notation of Ref. [41]. We use

8 For the np system, this equation is correct modulo terms which are proportional to (mp −mn)2 which are beyond the accuracy of the
present calculation.
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the method proposed by Vincent and Phatak [126] to calculate the corresponding phase shifts and mixing angles in
momentum space, see also Refs. [1, 36, 81] for a description of this approach.
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