8,282 research outputs found
Complex Behavior in Simple Models of Biological Coevolution
We explore the complex dynamical behavior of simple predator-prey models of
biological coevolution that account for interspecific and intraspecific
competition for resources, as well as adaptive foraging behavior. In long
kinetic Monte Carlo simulations of these models we find quite robust 1/f-like
noise in species diversity and population sizes, as well as power-law
distributions for the lifetimes of individual species and the durations of
quiet periods of relative evolutionary stasis. In one model, based on the
Holling Type II functional response, adaptive foraging produces a metastable
low-diversity phase and a stable high-diversity phase.Comment: 8 pages, 5 figure
Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies
We present a novel framework to decompose three-nucleon forces in a momentum
space partial-wave basis. The new approach is computationally much more
efficient than previous methods and opens the way to ab initio studies of
few-nucleon scattering processes, nuclei and nuclear matter based on
higher-order chiral 3N forces. We use the new framework to calculate matrix
elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces
and carry out benchmark calculations for neutron matter and symmetric nuclear
matter. We also study the size of the individual three-nucleon force
contributions for H. For nonlocal regulators, we find that the sub-leading
terms, which have been neglected in most calculations so far, provide important
contributions. All matrix elements are calculated and stored in a user-friendly
way, such that values of low-energy constants as well as the form of regulator
functions can be chosen freely.Comment: 10 pages, 4 figure
Complex-mass renormalization in hadronic EFT: applicability at two-loop order
We discuss the application of the complex-mass scheme to multi-loop diagrams
in hadronic effective field theory by considering as an example a two-loop
self-energy diagram. We show that the renormalized two-loop diagram satisfies
the power counting.Comment: 8 pages, 2 figures, version accepted for publication in EPJ
On Matrix Product States for Periodic Boundary Conditions
The possibility of a matrix product representation for eigenstates with
energy and momentum zero of a general m-state quantum spin Hamiltonian with
nearest neighbour interaction and periodic boundary condition is considered.
The quadratic algebra used for this representation is generated by 2m operators
which fulfil m^2 quadratic relations and is endowed with a trace. It is shown
that {\em not} every eigenstate with energy and momentum zero can be written as
matrix product state. An explicit counter-example is given. This is in contrast
to the case of open boundary conditions where every zero energy eigenstate can
be written as a matrix product state using a Fock-like representation of the
same quadratic algebra.Comment: 7 pages, late
Optical alignment and polarization conversion of neutral exciton spin in individual InAs/GaAs quantum dots
We investigate exciton spin memory in individual InAs/GaAs self-assembled
quantum dots via optical alignment and conversion of exciton polarization in a
magnetic field. Quasiresonant phonon-assisted excitation is successfully
employed to define the initial spin polarization of neutral excitons. The
conservation of the linear polarization generated along the bright exciton
eigenaxes of up to 90% and the conversion from circular- to linear polarization
of up to 47% both demonstrate a very long spin relaxation time with respect to
the radiative lifetime. Results are quantitatively compared with a model of
pseudo-spin 1/2 including heavy-to-light hole mixing.Comment: 5 pages, 3 figure
Role of the total isospin 3/2 component in three-nucleon reactions
We discuss the role of the three-nucleon isospin T=3/2 amplitude in elastic
neutron-deuteron scattering and in the deuteron breakup reaction. The
contribution of this amplitude originates from charge-independence breaking of
the nucleon-nucleon potential and is driven by the difference between
neutron-neutron (proton-proton) and neutron-proton forces. We study the
magnitude of that contribution to the elastic scattering and breakup
observables, taking the locally regularized chiral N4LO nucleon-nucleon
potential supplemented by the chiral N2LO three-nucleon force. For comparison
we employ also the Av18 nucleon-nucleon potential combined with the Urbana IX
three-nucleon force. We find that the isospin T=3/2 component is important for
the breakup reaction and the proper treatment of charge-independence breaking
in this case requires the inclusion of the 1S0 state with isospin T=3/2. For
neutron-deuteron elastic scattering the T=3/2 contributions are insignificant
and charge-independence breaking can be accounted for by using the effective
t-matrix generated with the so-called "2/3-1/3" rule.Comment: 24 pages, 8 figures, 3 Table
Reconciling threshold and subthreshold expansions for pion-nucleon scattering
Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating
the pion-nucleon amplitude in the physical region and for subthreshold
kinematics due to loop effects enhanced by large low-energy constants. Studying
the chiral convergence of threshold and subthreshold parameters up to fourth
order in the small-scale expansion, we address the question to what extent this
tension can be mitigated by including the as an explicit degree
of freedom and/or using a covariant formulation of baryon ChPT. We find that
the inclusion of the indeed reduces the low-energy constants to more
natural values and thereby improves consistency between threshold and
subthreshold kinematics. In addition, even in the -less theory the
resummation of corrections in the covariant scheme improves the results
markedly over the heavy-baryon formulation, in line with previous observations
in the single-baryon sector of ChPT that so far have evaded a profound
theoretical explanation.Comment: 10 pages, 4 tables, Mathematica notebook with the analytic
expressions for threshold and subthreshold parameters included as
supplementary material; journal versio
High-field fMRI reveals brain activation patterns underlying saccade execution in the human superior colliculus
Background
The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans.
Methodology/Principal Findings
The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar.
Conclusions/Significance
Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned
Study of the general mechanism of stress corrosion of aluminum alloys and development of techniques for its detection Quarterly report, 1 Dec. 1967 - 29 Feb. 1968
Stress corrosion of aluminum alloys and techniques for its detectio
- …