8,282 research outputs found

    Complex Behavior in Simple Models of Biological Coevolution

    Full text link
    We explore the complex dynamical behavior of simple predator-prey models of biological coevolution that account for interspecific and intraspecific competition for resources, as well as adaptive foraging behavior. In long kinetic Monte Carlo simulations of these models we find quite robust 1/f-like noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of quiet periods of relative evolutionary stasis. In one model, based on the Holling Type II functional response, adaptive foraging produces a metastable low-diversity phase and a stable high-diversity phase.Comment: 8 pages, 5 figure

    Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

    Full text link
    We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for 3^3H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.Comment: 10 pages, 4 figure

    Complex-mass renormalization in hadronic EFT: applicability at two-loop order

    Full text link
    We discuss the application of the complex-mass scheme to multi-loop diagrams in hadronic effective field theory by considering as an example a two-loop self-energy diagram. We show that the renormalized two-loop diagram satisfies the power counting.Comment: 8 pages, 2 figures, version accepted for publication in EPJ

    On Matrix Product States for Periodic Boundary Conditions

    Full text link
    The possibility of a matrix product representation for eigenstates with energy and momentum zero of a general m-state quantum spin Hamiltonian with nearest neighbour interaction and periodic boundary condition is considered. The quadratic algebra used for this representation is generated by 2m operators which fulfil m^2 quadratic relations and is endowed with a trace. It is shown that {\em not} every eigenstate with energy and momentum zero can be written as matrix product state. An explicit counter-example is given. This is in contrast to the case of open boundary conditions where every zero energy eigenstate can be written as a matrix product state using a Fock-like representation of the same quadratic algebra.Comment: 7 pages, late

    Optical alignment and polarization conversion of neutral exciton spin in individual InAs/GaAs quantum dots

    Full text link
    We investigate exciton spin memory in individual InAs/GaAs self-assembled quantum dots via optical alignment and conversion of exciton polarization in a magnetic field. Quasiresonant phonon-assisted excitation is successfully employed to define the initial spin polarization of neutral excitons. The conservation of the linear polarization generated along the bright exciton eigenaxes of up to 90% and the conversion from circular- to linear polarization of up to 47% both demonstrate a very long spin relaxation time with respect to the radiative lifetime. Results are quantitatively compared with a model of pseudo-spin 1/2 including heavy-to-light hole mixing.Comment: 5 pages, 3 figure

    Role of the total isospin 3/2 component in three-nucleon reactions

    Get PDF
    We discuss the role of the three-nucleon isospin T=3/2 amplitude in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential and is driven by the difference between neutron-neutron (proton-proton) and neutron-proton forces. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the locally regularized chiral N4LO nucleon-nucleon potential supplemented by the chiral N2LO three-nucleon force. For comparison we employ also the Av18 nucleon-nucleon potential combined with the Urbana IX three-nucleon force. We find that the isospin T=3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S0 state with isospin T=3/2. For neutron-deuteron elastic scattering the T=3/2 contributions are insignificant and charge-independence breaking can be accounted for by using the effective t-matrix generated with the so-called "2/3-1/3" rule.Comment: 24 pages, 8 figures, 3 Table

    Reconciling threshold and subthreshold expansions for pion-nucleon scattering

    Get PDF
    Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion-nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ(1232)\Delta(1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ\Delta indeed reduces the low-energy constants to more natural values and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in the Δ\Delta-less theory the resummation of 1/mN1/m_N corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.Comment: 10 pages, 4 tables, Mathematica notebook with the analytic expressions for threshold and subthreshold parameters included as supplementary material; journal versio

    High-field fMRI reveals brain activation patterns underlying saccade execution in the human superior colliculus

    Get PDF
    Background The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. Methodology/Principal Findings The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. Conclusions/Significance Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned
    • …
    corecore