9,680 research outputs found

    Subleading contributions to the nuclear scalar isoscalar currents

    Full text link
    We extend our recent analyses of the nuclear vector, axial-vector and pseudoscalar currents and derive the leading one-loop corrections to the two-nucleon scalar current operator in the framework of chiral effective field theory using the method of unitary transformation. We also show that the scalar current operators at zero momentum transfer are directly related to the quark mass dependence of the nuclear forces.Comment: 14 pages, 6 figure

    Precision nucleon-nucleon potential at fifth order in the chiral expansion

    Get PDF
    We present a nucleon-nucleon potential at fifth order in chiral effective field theory. We find a substantial improvement in the description of nucleon-nucleon phase shifts as compared to the fourth-order results of Ref. [E. Epelbaum, H. Krebs, U.-G. Mei{\ss}ner, arXiv:1412.0142 [nucl-th]]. This provides clear evidence of the corresponding two-pion exchange contributions with all low-energy constants being determined from pion-nucleon scattering. The fifth-order corrections to nucleon-nucleon observables appear to be of a natural size which confirms the good convergence of the chiral expansion for nuclear forces. Furthermore, the obtained results provide strong support for the novel way of quantifying the theoretical uncertainty due to the truncation of the chiral expansion proposed in Ref. [E. Epelbaum, H. Krebs, U.-G. Mei{\ss}ner, arXiv:1412.0142 [nucl-th]]. Our work opens up new perspectives for precision ab initio calculations in few- and many-nucleon systems and is especially relevant for ongoing efforts towards a quantitative understanding the structure of the three-nucleon force in the framework of chiral effective field theory.Comment: 5 pages, 4 figures, 3 table

    Nuclear axial current operators to fourth order in chiral effective field theory

    Full text link
    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.Comment: 72 pages, 21 figures, 3 table

    Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order

    Get PDF
    We present improved nucleon-nucleon potentials derived in chiral effective field theory up to next-to-next-to-next-to-leading order. We argue that the nonlocal momentum-space regulator employed in the two-nucleon potentials of Refs. [E. Epelbaum, W. Gloeckle, U.-G. Mei{\ss}ner, Nucl. Phys. A747 (2005) 362], [D.R. Entem, R. Machleidt, Phys. Rev. C68 (2003) 041001] is not the most efficient choice, in particular since it affects the long-range part of the interaction. We are able to significantly reduce finite-cutoff artefacts by using an appropriate regularization in coordinate space which maintains the analytic structure of the amplitude. The new potentials do not require the additional spectral function regularization employed in Ref. [E. Epelbaum, W. Gloeckle, U.-G. Mei{\ss}ner, Nucl. Phys. A747 (2005) 362] to cut off the short-range components of the two-pion exchange and make use of the low-energy constants c_i and d_i determined from pion-nucleon scattering without any fine tuning. We discuss in detail the construction of the new potentials and convergence of the chiral expansion for two-nucleon observables. We also introduce a new procedure for estimating the theoretical uncertainty from the truncation of the chiral expansion that replaces previous reliance on cutoff variation.Comment: 34 pages, 13 figures, 7 table

    Near threshold neutral pion electroproduction on deuterium in chiral perturbation theory

    Get PDF
    Near threshold neutral pion electroproduction on the deuteron is studied in the framework of baryon chiral perturbation theory at next-to-leading order in the chiral expansion. We develop the multipole decomposition for pion production off spin-1 particles appropriate for the threshold region. The existing data at photon virtuality k^2 = -0.1 GeV^2 can be described satisfactorily. Furthermore, the prediction for the S-wave multipole E_d at the photon point is in good agreement with the data.Comment: 27 pp, 15 fig

    On Matrix Product States for Periodic Boundary Conditions

    Full text link
    The possibility of a matrix product representation for eigenstates with energy and momentum zero of a general m-state quantum spin Hamiltonian with nearest neighbour interaction and periodic boundary condition is considered. The quadratic algebra used for this representation is generated by 2m operators which fulfil m^2 quadratic relations and is endowed with a trace. It is shown that {\em not} every eigenstate with energy and momentum zero can be written as matrix product state. An explicit counter-example is given. This is in contrast to the case of open boundary conditions where every zero energy eigenstate can be written as a matrix product state using a Fock-like representation of the same quadratic algebra.Comment: 7 pages, late

    Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    Get PDF
    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.Comment: 34 pages, 8 figures, journal version to appear in Eur. Phys. J.

    New insights into the spin structure of the nucleon

    Get PDF
    We analyze the low-energy spin structure of the nucleon in a covariant effective field theory with explicit spin-3/2 degrees of freedom to third order in the small scale expansion. Using the available data on the strong and electromagnetic width of the Delta-resonance, we give parameter-free predictions for various spin-polarizabilities and moments of spin structure functions. We find an improved description of the nucleon spin structure at finite photon virtualities for some observables and point out the necessity of a fourth order calculation.Comment: 13 pages, 6 figure
    corecore