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Abstract

We present lattice calculations for the ground state energy of dilute neutron matter at

next-to-leading order in chiral effective field theory. This study follows a series of recent

papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this

work we introduce an improved spin- and isospin-projected leading-order action which allows

for a perturbative treatment of corrections at next-to-leading order and smaller estimated

errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the

ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2%

to 10% of normal nuclear density.
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I. INTRODUCTION

Chiral effective field theory for low-energy nucleons on the lattice has been investigated

in several recent papers. In Ref. [1] chiral effective field theory was considered at leading

order (LO) using two different lattice actions. These actions, LO1 and LO2, each include

the leading-order interactions in Weinberg’s power counting scheme [2, 3]. The difference

is that in LO1 the nucleon-nucleon “contact” interactions are point-like while in LO2 they

are smeared using a Gaussian function. These smeared interactions in LO2 were used to

better reproduce S-wave phase shifts for nucleon momenta up to the pion mass. If the

effective field theory expansion is converging properly then low-energy physical observables

computed using LO1 and LO2 should agree up to differences of the size of next-to-leading

order (NLO) corrections. Similarly when NLO corrections are included, agreement should

be comparable to corrections at next-to-next-to-leading order (NNLO).

In Ref. [4] the spherical wall method [5] was used to calculate nucleon-nucleon scattering

phase shifts and the S-D mixing angle for LO1 and LO2 at spatial lattice spacing a = (100

MeV)−1 and temporal lattice spacing at = (70 MeV)−1. In a companion paper [6] the

same LO2 lattice action was reproduced using auxiliary fields, and the ground state energy

of dilute neutron matter was calculated using projection Monte Carlo at densities ranging

from 2% to 8% of normal nuclear density. For each Monte Carlo configuration next-to-

leading order corrections were computed using first-order perturbation theory. Simulations

using the lattice action LO1 were also attempted, however strong complex phase oscillations

prevented an accurate calculation.

Ground state energy results using the LO2 action at leading order and next-to-leading

order are shown in Fig. 1. The energy is plotted as a fraction of the ground state energy for

non-interacting neutrons at the same Fermi momentum kF . For kF less than 100 MeV, the

difference between results at leading order and next-to-leading order is small enough that the

convergence of the effective theory appears reliable. However for kF greater than 100 MeV

the difference is relatively large, and the perturbative treatment of NLO corrections seems

questionable. The analysis in Ref. [6] found that much of the difference between the LO2 and

NLO2 results could be ascribed to differences in the P -wave phase shifts. Although helpful

in S-wave channels, the Gaussian smearing used in LO2 produces unphysical attractive

forces in each P -wave channel which must be cancelled at next-to-leading order. In this
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FIG. 1: Ground state energy ratio E0/E
free
0 for dilute neutron matter versus Fermi momentum kF

for LO2 and NLO2 [6].

paper we introduce a new leading-order action LO3 that solves this problem. The new

action equals LO2 in each S-wave channel but matches LO1 in each P -wave channel. We

construct the new action using projection operators for the spin-singlet/isospin-triplet and

spin-triplet/isospin-singlet channels.

The paper is organized as follows. We first review the effective potential for chiral

effective field theory up to next-to-leading order and simplifications that can be made at low

cutoff momentum. We also summarize the lattice transfer matrix formalism for LO1 and

LO2. The new action LO3 is then introduced and phase shifts and the S-D mixing angle

are computed up to next-to-leading order. After this we rewrite the LO3 transfer matrix in

terms of one-body interactions with auxiliary fields. This allows us to simulate the ground

state of the many-neutron system up to next-to-leading order using projection Monte Carlo.

We compare the new results obtained using LO3 and NLO3 with the LO2 and NLO2 results

from Ref. [6] and other published data in the literature. We also analyze the ground state

energy ratio E0/E
free
0 as an expansion near the unitarity limit.
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II. CHIRAL EFFECTIVE FIELD THEORY

A. Effective potential

In our notation ~q denotes the t-channel momentum transfer for nucleon-nucleon scatter-

ing and ~k is the u-channel exchanged momentum transfer. At leading order in the Weinberg

power-counting scheme [2, 3] the nucleon-nucleon effective potential includes two indepen-

dent contact terms and instantaneous one-pion exchange (OPEP),

VLO = V (0) + V OPEP, (1)

V (0) = CS + CT (~σ1 · ~σ2) , (2)

V OPEP = −
(

gA

2fπ

)2

τ 1 · τ 2
(~σ1 · ~q) (~σ2 · ~q)
q 2 +m2

π

. (3)

The vector arrow in ~σ signifies the three-vector index for spin, and the boldface for τ signifies

the three-vector index for isospin. For physical constants we take m = 938.92 MeV as the

nucleon mass, mπ = 138.08 MeV as the pion mass, fπ = 93 MeV as the pion decay constant,

and gA = 1.26 as the nucleon axial charge.

At next-to-leading order the effective potential has seven independent contact terms car-

rying two powers of momentum, corrections to the two LO contact terms, and instantaneous

two-pion exchange (TPEP) [7, 8, 9, 10, 11]. Following the notation of Ref. [10, 11] we have

VNLO = VLO + ∆V (0) + V (2) + V TPEP
NLO . (4)

The NLO contact interactions are given by

∆V (0) = ∆CS + ∆CT (~σ1 · ~σ2) , (5)

V (2) = C1q
2 + C2k

2 +
(

C3q
2 + C4k

2
)

(~σ1 · ~σ2) + iC5
1

2
(~σ1 + ~σ2) ·

(

~q × ~k
)

+ C6 (~σ1 · ~q) (~σ2 · ~q) + C7

(

~σ1 · ~k
)(

~σ2 · ~k
)

, (6)

and the NLO two-pion exchange potential is [12, 13]

V TPEP
NLO = − τ 1 · τ 2

384π2f 4
π

L(q)

[

4m2
π

(

5g4
A − 4g2

A − 1
)

+ q2
(

23g4
A − 10g2

A − 1
)

+
48g4

Am
4
π

4m2
π + q2

]

− 3g4
A

64π2f 4
π

L(q)
[

(~q · ~σ1) (~q · ~σ2) − q2 (~σ1 · ~σ2)
]

, (7)
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where

L(q) =
1

2q

√

4m2
π + q2 ln

√

4m2
π + q2 + q

√

4m2
π + q2 − q

. (8)

Recent reviews of chiral effective field theory can be found in Ref. [14, 15, 16, 17].

B. Power counting and cutoff momentum

There have been a number of studies on the short-distance behavior of the one-pion

exchange potential and the consistency of the Weinberg power-counting scheme. An alter-

native scheme known as KSW power counting was proposed [18, 19, 20]. This scheme is

based on a perturbative treatment of the one-pion exchange potential and allows for system-

atic control of ultraviolet divergences in the effective theory. Unfortunately convergence at

higher orders was found to be poor in some partial waves for momenta comparable to the

pion mass [21].

Other power counting alternatives have also been proposed. In one scheme the lead-

ing f−2
π r−3 short-distance singularity is treated non-perturbatively while the remainder of

the one-pion potential is introduced as a perturbative expansion in powers of mπ [22].

More recently a different power counting modification was proposed in which one-pion

exchange is treated non-perturbatively in lower angular momentum channels along with

higher-derivative counterterms promoted to leading order [23]. Further investigations of

this approach in higher partial waves and power counting with one-pion exchange were

considered in Ref. [24, 25].

On the lattice the ultraviolet momentum cutoff is inversely proportional to the lattice

spacing, Λ = π/a. For simple calculations of two-nucleon scattering on the lattice we could

take any lattice spacing satisfying Λ ≫ mπ. However in few- and many-nucleon calculations

where we use Euclidean-time projection and auxiliary-field Monte Carlo methods, severe

numerical problems appear when Λ is very large. In some attractive channels the problem

is due to spurious deeply-bound states which may appear at sufficiently large Λ. In other

channels one faces the problem due to short-range hard-core repulsion at very large Λ. This

is manifested as sign or complex phase oscillations which scale exponentially with system

size and strength of the repulsive interaction.

To avoid these problems we consider lattice simulations where the cutoff momentum is

only a few times the pion mass. In this study we take Λ = 314 MeV ≈ 2.3mπ, corresponding

5



with a−1 = 100 MeV. For this low cutoff scale the advantages of the alternative power-

counting schemes discussed above are numerically insignificant [26], and so we use standard

Weinberg power counting. For nearly all |q| < Λ we can expand the two-pion exchange

potential in powers of q2/(4m2
π),

L(q) = 1 +
1

3

q2

4m2
π

+ · · · , (9)

4m2
π

4m2
π + q2

L(q) = 1 − 2

3

q2

4m2
π

+ · · · , (10)

V TPEP
NLO = − τ 1 · τ 2

384π2f 4
π

[

4m2
π

(

8g4
A − 4g2

A − 1
)

+
2

3
q2
(

34g4
A − 17g2

A − 2
)

+O

(

(

q2

4m2
π

)2
)]

− 3g4
A

64π2f 4
π

[

(~q · ~σ1) (~q · ~σ2) − q2 (~σ1 · ~σ2)
]

[

1 +O
(

q2

4m2
π

)]

. (11)

This expansion fails to converge only for values of q near the cutoff scale Λ ≈ 2.3mπ, where

the effective theory is already problematic due to large cutoff effects of size O (q2/Λ2). There

is no reason to keep the full non-local structure of V TPEP
NLO at this lattice spacing. Instead

we simply use

VLO = V (0) + V OPEP, (12)

VNLO = VLO + ∆V (0) + V (2), (13)

where the terms in Eq. (11) with up to two powers of q are absorbed as a redefinition of the

coefficients ∆V (0) and V (2). This same approach can be applied to the two-pion exchange

potential at next-to-next-to-leading order and higher-order n-pion exchange potentials.

III. LATTICE FORMALISM

A. Lattice notation

In this paper we assume exact isospin symmetry and neglect electromagnetic interactions.

We use ~n to represent integer-valued lattice vectors on a three-dimensional spatial lattice

and either ~p, ~q, or ~k to represent integer-valued momentum lattice vectors. l̂ = 1̂, 2̂, 3̂

are unit lattice vectors in the spatial directions, a is the spatial lattice spacing, and L is

the length of the cubic spatial lattice in each direction. We use the Euclidean transfer

matrix formalism defined in [1] with lattice time step at, and the integer nt labels the time
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steps. We define αt as the ratio between lattice spacings, αt = at/a. Throughout we use

dimensionless parameters and operators, which correspond with physical values multiplied

by the appropriate power of a. Final results are presented in physical units with the

corresponding unit stated explicitly. As in [1] the spatial lattice spacing is a = (100

MeV)−1 and temporal lattice spacing is at = (70 MeV)−1.

We use a and a† to denote annihilation and creation operators. To avoid confusion we

make explicit in our lattice notation all spin and isospin indices using

a0,0 = a↑,p, a0,1 = a↑,n, (14)

a1,0 = a↓,p, a1,1 = a↓,n. (15)

The first subscript is for spin and the second subscript is for isospin. We use τI with

I = 1, 2, 3 to represent Pauli matrices acting in isospin space and σS with S = 1, 2, 3 to

represent Pauli matrices acting in spin space. We also use the letters S and I to denote the

total spin and total isospin for the two-nucleon system. The intended meaning in each case

should be clear from the context. We use the eight vertices of a unit cube on the lattice

to define spatial derivatives. For each spatial direction l = 1, 2, 3 and any lattice function

f(~n), let

∆lf(~n) =
1

4

∑

ν1,ν2,ν3=0,1

(−1)νl+1f(~n+ ~ν), ~ν = ν11̂ + ν22̂ + ν33̂. (16)

We also define the double spatial derivative along direction l,

▽
2
l f(~n) = f(~n+ l̂) + f(~n− l̂) − 2f(~n). (17)

B. Densities and current densities

We define the local density of nucleons at lattice site ~n,

ρa†,a(~n) =
∑

i,j=0,1

a†i,j(~n)ai,j(~n). (18)

This is invariant under Wigner’s SU(4) symmetry transforming all spin and isospin degrees

of freedom [27]. Similarly we define a local spin density for S = 1, 2, 3,

ρa†,a
S (~n) =

∑

i,j,i′=0,1

a†i,j(~n) [σS]ii′ ai′,j(~n), (19)
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isospin density for I = 1, 2, 3,

ρa†,a
I (~n) =

∑

i,j,j′=0,1

a†i,j(~n) [τI ]jj′ ai,j′(~n), (20)

and spin-isospin density for S, I = 1, 2, 3,

ρa†,a
S,I (~n) =

∑

i,j,i′,j′=0,1

a†i,j(~n) [σS]ii′ [τI ]jj′ ai′,j′(~n). (21)

For each static density we also have an associated current density. Similar to the defini-

tion of the lattice derivative ∆l in Eq. (16), we use the eight vertices of a unit cube,

~ν = ν11̂ + ν22̂ + ν33̂, (22)

for ν1, ν2, ν3 = 0, 1. Let ~ν(−l) for l = 1, 2, 3 be the result of reflecting the lth-component of

~ν about the center of the cube,

~ν(−l) = ~ν + (1 − 2νl)l̂. (23)

Omitting factors of i and 1/m, we can write the lth-component of the SU(4)-invariant current

density as

Πa†,a
l (~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j=0,1

(−1)νl+1a†i,j(~n + ~ν(−l))ai,j(~n+ ~ν). (24)

Similarly the lth-component of spin current density is

Πa†,a
l,S (~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j,i′=0,1

(−1)νl+1a†i,j(~n+ ~ν(−l)) [σS]ii′ ai′,j(~n + ~ν), (25)

lth-component of isospin current density is

Πa†,a
l,I (~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j,j′=0,1

(−1)νl+1a†i,j(~n+ ~ν(−l)) [τI ]jj′ ai,j′(~n+ ~ν), (26)

and lth-component of spin-isospin current density is

Πa†,a
l,S,I(~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j,i′,j′=0,1

(−1)νl+1a†i,j(~n + ~ν(−l)) [σS ]ii′ [τI ]jj′ ai′,j′(~n + ~ν). (27)
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IV. LATTICE ACTIONS

A. Instantaneous free pion action

The lattice action for free pions with purely instantaneous propagation is

Sππ(πI) = αt(
m2

π

2
+ 3)

∑

~n,nt,I

πI(~n, nt)πI(~n, nt) − αt

∑

~n,nt,I,l

πI(~n, nt)πI(~n+ l̂, nt), (28)

where πI is the pion field labelled with isospin index I. We note that pion fields at different

time steps nt and n′
t are decoupled due to the omission of time derivatives. This decoupling

among different time steps generates instantaneous propagation in one-pion exchange dia-

grams and eliminates radiative pion loops. It is convenient to define a rescaled pion field,

π′
I ,

π′
I(~n, nt) =

√
qππI(~n, nt), (29)

qπ = αt(m
2
π + 6). (30)

Then

Sππ(π′
I) =

1

2

∑

~n,nt,I

π′
I(~n, nt)π

′
I(~n, nt) −

αt

qπ

∑

~n,nt,I,l

π′
I(~n, nt)π

′
I(~n + l̂, nt). (31)

In momentum space the action is

Sππ(π′
I) =

1

L3

∑

I,~k

π′
I(−~k, nt)π

′
I(
~k, nt)

[

1

2
− αt

qπ

∑

l

cos
(

2πkl

L

)

]

. (32)

The instantaneous pion correlation function at spatial separation ~n is

〈

π′
I(~n, nt)π

′
I(~0, nt)

〉

=

∫

Dπ′
I π

′
I(~n, nt)π

′
I(~0, nt) exp [−Sππ]

∫

Dπ′
I exp [−Sππ]

(no sum on I)

=
1

L3

∑

~k

e−i 2π
L

~k·~nDπ(~k), (33)

where

Dπ(~k) =
1

1 − 2αt

qπ

∑

l cos
(

2πkl

L

) . (34)

B. Transfer matrices for LO1 and LO2

Roughly speaking, the Euclidean-time transfer matrix is the exponential of the Hamil-

tonian, exp(−H∆t), where ∆t equals one temporal lattice spacing. The normal-ordered
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transfer matrix for non-interacting nucleons is

Mfree =: exp (−Hfreeαt) : , (35)

where the :: symbols indicate normal ordering. We use the O(a4)-improved free lattice

Hamiltonian,

Hfree =
49

12m

∑

~n

∑

i,j=0,1

a†i,j(~n)ai,j(~n)

− 3

4m

∑

~n

∑

i,j=0,1

∑

l=1,2,3

[

a†i,j(~n)ai,j(~n+ l̂) + a†i,j(~n)ai,j(~n− l̂)
]

+
3

40m

∑

~n

∑

i,j=0,1

∑

l=1,2,3

[

a†i,j(~n)ai,j(~n+ 2l̂) + a†i,j(~n)ai,j(~n− 2l̂)
]

− 1

180m

∑

~n

∑

i,j=0,1

∑

l=1,2,3

[

a†i,j(~n)ai,j(~n + 3l̂) + a†i,j(~n)ai,j(~n− 3l̂)
]

. (36)

Let us define the two-derivative pion correlator,

GS1S2(~n) =
〈

∆S1π
′
I(~n, nt)∆S2π

′
I(~0, nt)

〉

(no sum on I)

=
1

16

∑

ν1,ν2,ν3=0,1

∑

ν′
1,ν′

2,ν′
3=0,1

(−1)νS1 (−1)ν′
S2

〈

π′
I(~n+ ~ν − ~ν ′, nt)π

′
I(~0, nt)

〉

. (37)

With interactions included, the lattice transfer matrix LO1 has the form

MLO1
=: exp

{

−Hfreeαt −
1

2
Cαt

∑

~n

[

ρa†,a(~n)
]2

− 1

2
CI2αt

∑

I

∑

~n

[

ρa†,a
I (~n)

]2

+
g2

Aα
2
t

8f 2
πqπ

∑

S1,S2,I

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1,I(~n1)ρ

a†,a
S2,I(~n2)







: , (38)

where C is the coefficient of the Wigner SU(4)-invariant contact interaction and CI2 is

the coefficient of the isospin-dependent contact interaction. For the S-wave there are

two independent channels corresponding with the spin-singlet/isospin-triplet and the spin-

triplet/isospin-singlet. To reproduce the physical scattering lengths in each channel we

set CS=0,I=1 = −5.021 × 10−5 MeV−2 and CS=1,I=0 = −5.714 × 10−5 MeV−2 and use the

relations

C = (3CS=0,I=1 + CS=1,I=0) /4, (39)

CI2 = (CS=0,I=1 − CS=1,I=0) /4. (40)
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The LO2 transfer matrix is [1]

MLO2 =: exp







−Hfreeαt −
αt

2L3

∑

~q

f(~q)

[

Cρa†,a(~q)ρa†,a(−~q) + CI2

∑

I

ρa†,a
I (~q)ρa†,a

I (−~q)
]

+
g2

Aα
2
t

8f 2
πqπ

∑

S1,S2,I

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1,I(~n1)ρ

a†,a
S2,I(~n2)







: , (41)

where the momentum-dependent coefficient function f(~q) is defined as

f(~q) = f−1
0 exp

[

−b
∑

l

(1 − cos ql)

]

, (42)

and the normalization factor f0 is determined by the condition

f0 =
1

L3

∑

~q

exp

[

−b
∑

l

(1 − cos ql)

]

. (43)

As in Ref. [1] we use the value b = 0.6. This gives approximately the correct average effective

range for the two S-wave channels when C and CI2 are tuned to produce the physical S-wave

scattering lengths. We set CS=0,I=1 = −3.414× 10−5 MeV−2 and CS=1,I=0 = −4.780× 10−5

MeV−2 and use the same relations Eq. (39) and (40). The momentum-dependent function

f(~q) produces the Gaussian-smeared “contact” interactions discussed in the introduction.

The replacement of pointlike interactions in LO1 with Gaussian-smeared interactions

in LO2 is similar to the lattice improvement program of Symanzik used in lattice QCD

actions [28, 29]. There is a conceptual difference however since we are dealing with an

effective field theory rather than a renormalizable field theory. The higher-order operators

we consider do not only cancel lattice artifacts but also include higher-order interactions of

the effective theory. In our lattice calculations the improved leading-order action is treated

non-perturbatively while higher-order interactions are included as a perturbative expansion.

The choice of improved action sets a dividing line between perturbative and non-perturbative

interactions. This dividing line should be immaterial so long as the perturbative expansion

converges. At any given order, lattice calculations using different improved actions should

agree up to corrections the size of terms at next order.

C. Transfer matrix for LO3

The Gaussian smearing used in LO2 is useful in S-wave channels but produces unphysical

attractive forces in P -wave channels. To avoid this problem we introduce a new leading-
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order action LO3 that equals LO2 in each S-wave channel but matches LO1 in each P -

wave channel. We multiply the Gaussian-smeared “contact” interactions with projection

operators for the spin-singlet/isospin-triplet channel, PS=0,I=1, and the spin-triplet/isospin-

singlet channel, PS=1,I=0. If we assign labels to the two nucleons, A and B, these projection

operators are

PS=0,I=1 =

(

1

4
− 1

4

∑

S

σA
S σ

B
S

)(

3

4
+

1

4

∑

I

τA
I τ

B
I

)

, (44)

PS=1,I=0 =

(

3

4
+

1

4

∑

S

σA
S σ

B
S

)(

1

4
− 1

4

∑

I

τA
I τ

B
I

)

. (45)

We can define corresponding momentum-dependent density correlations,

VS=0,I=1(~q) =
3

32
: ρa†,a(~q)ρa†,a(−~q) : − 3

32
:
∑

S

ρa†,a
S (~q)ρa†,a

S (−~q) :

+
1

32
:
∑

I

ρa†,a
I (~q)ρa†,a

I (−~q) : − 1

32
:
∑

S,I

ρa†,a
S,I (~q)ρa†,a

S,I (−~q) :, (46)

VS=1,I=0(~q) =
3

32
: ρa†,a(~q)ρa†,a(−~q) : +

1

32
:
∑

S

ρa†,a
S (~q)ρa†,a

S (−~q) :

− 3

32
:
∑

I

ρa†,a
I (~q)ρa†,a

I (−~q) : − 1

32
:
∑

S,I

ρa†,a
S,I (~q)ρa†,a

S,I (−~q) : . (47)

We use VS=0,I=1 and VS=1,I=0 to write the leading-order transfer matrix for LO3,

MLO3 =: exp







−Hfreeαt −
αt

L3

∑

~q

f(~q) [CS=0,I=1VS=0,I=1(~q) + CS=1,I=0VS=1,I=0(~q)]

+
g2

Aα
2
t

8f 2
πqπ

∑

S1,S2,I

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1,I(~n1)ρ

a†,a
S2,I(~n2)







: . (48)

The momentum-dependent coefficient function f(~q) is the same as defined in Eq. 42 and 43.

D. Lattice interactions at next-to-leading-order

The lattice interactions at next-to-leading order were discussed in Ref. [4]. We follow

the same formalism here. We start with the corrections to the leading-order “contact”

interactions. These NLO interactions are chosen to be point-like rather than smeared

operators, and we write the interactions in the same manner as in Ref. [4],

∆V =
1

2
∆C :

∑

~n

ρa†,a(~n)ρa†,a(~n) :, (49)
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∆VI2 =
1

2
∆CI2 :

∑

~n,I

ρa†,a
I (~n)ρa†,a

I (~n) : . (50)

At next-to-leading order there are seven independent contact interactions with two deriva-

tives. The basis we choose is

Vq2 = −1

2
Cq2 :

∑

~n,l

ρa†,a(~n)▽2
l ρ

a†,a(~n) :, (51)

VI2,q2 = −1

2
CI2,q2 :

∑

~n,I,l

ρa†,a
I (~n)▽2

l ρ
a†,a
I (~n) :, (52)

VS2,q2 = −1

2
CS2,q2 :

∑

~n,S,l

ρa†,a
S (~n)▽2

l ρ
a†,a
S (~n) :, (53)

VS2,I2,q2 = −1

2
CS2,I2,q2 :

∑

~n,S,I,l

ρa†,a
S,I (~n)▽2

l ρ
a†,a
S,I (~n) :, (54)

V(q·S)2 =
1

2
C(q·S)2 :

∑

~n

∑

S

∆Sρ
a†,a
S (~n)

∑

S′

∆S′ρa†,a
S′ (~n) :, (55)

VI2,(q·S)2 =
1

2
CI2,(q·S)2 :

∑

~n,I

∑

S

∆Sρ
a†,a
S,I (~n)

∑

S′

∆S′ρa†,a
S′,I (~n) :, (56)

V(iq×S)·k = − i

2
C(iq×S)·k :

∑

~n,l,S,l′

εl,S,l′

[

Πa†,a
l (~n)∆l′ρ

a†,a
S (~n) + Πa†,a

l,S (~n)∆l′ρ
a†,a(~n)

]

: . (57)

These operators are different from those shown in Eq. (6) and allow for a simple projection

onto different isospin channels. This will be useful later when restricting to the interactions

of neutrons.

The V(iq×S)·k term corresponds with the continuum interaction

C(iq×S)·k

(

i~q ×
(

~σA + ~σB
))

· ~k, (58)

which vanishes unless the total spin is S = 1. The continuum limit of this interaction is

antisymmetric under the exchange of ~q and ~k and is nonzero only for odd parity channels.

However the lattice interaction V(iq×S)·k does not share this exact t-u channel antisymmetry

at nonzero lattice spacing. Therefore V(iq×S)·k has small lattice artifacts for S = 1 in even

parity channels. We remove this defect by including an explicit projection onto total isospin

13



I = 1,

V I=1
(iq×S)·k = − i

2
CI=1

(iq×S)·k







3

4
:
∑

~n,l,S,l′

εl,S,l′

[

Πa†,a
l (~n)∆l′ρ

a†,a
S (~n) + Πa†,a

l,S (~n)∆l′ρ
a†,a(~n)

]

:

+
1

4
:
∑

~n,l,S,l′,I

εl,S,l′

[

Πa†,a
l,I (~n)∆l′ρ

a†,a
S,I (~n) + Πa†,a

l,S,I(~n)∆l′ρ
a†,a
I (~n)

]

:







. (59)

This projection completely eliminates lattice artifacts in the S = 1 even parity channels.

V. SCATTERING RESULTS FOR LO3 AND NLO3

We measure phase shifts and mixing angles using the spherical wall method [5]. This

consists of imposing a hard spherical wall boundary on the relative separation between

the two nucleons at some chosen radius Rwall. Scattering phase shifts are determined

from the energies of the spherical standing waves, and mixing angles are extracted from

projections on to spherical harmonics. At next-to-leading order there are nine unknown

operator coefficients: ∆C, ∆CI2, Cq2, CI2,q2, CS2,q2, CS2,I2,q2, C(q·S)2, CI2,(q·S)2 , and CI=1
(iq×S)·k.

These nine operator coefficients are fit in the same manner as described in Ref. [4]. For

Rwall = 10 + ǫ lattice units, where ǫ is an infinitesimal positive number, we compute energy

levels for the eight spherical wall modes listed in Table I. The labelling of these modes is

discussed in Ref. [4]. In addition to these we also consider Qd, the quadrupole moment of

the deuteron. Qd is a measure of S-D partial wave mixing at low energies and is somewhat

easier to compute on the lattice than the S-D mixing angle. For each of the nine observables

we compute derivatives with respect to the nine NLO coefficient operators. By inverting

the resulting 9×9 Jacobian matrix, we find values for the NLO coefficients needed to match

each of the nine target values using first-order perturbation theory. The results for the

operator coefficients are shown in Table II.

With the NLO3 coefficients in hand, we can now calculate lattice phase shifts and mixing

angles up to next-to-leading order using the spherical wall method. We consider spherical

walls with radii Rwall = 10+ǫ, 9+ǫ, and 8+ǫ lattice units. In order of increasing momentum,

the lattice data correspond with the first radial excitation for Rwall = 10+ ǫ, 9+ ǫ, and 8+ ǫ;

second radial excitation of Rwall = 10 + ǫ, 9 + ǫ, and 8 + ǫ; and so on. The S-wave phase

shifts for LO3 and NLO3 versus center-of-mass momentum pCM are shown in Fig. 2. The

14



TABLE I: Results for LO3 and the physical target values

Spherical wave Free nucleons LO3 PWA93

11S0 (MeV) 0.928 0.418 0.407

31S0 (MeV) 8.535 6.843 6.815

13S(D)1 (MeV) 0.928 −2.225 −2.225

33S(D)1 (MeV) 8.535 5.430 5.675

21P1 (MeV) 5.691 5.755 5.782

23P (F )0 (MeV) 5.691 5.569 5.584

23P (F )1 (MeV) 5.691 5.754 5.753

23P (F )2 (MeV) 5.691 5.684 5.669

Qd (fm2) N/A 0.276 0.286

TABLE II: Results for NLO3 operator coefficients

Coefficient NLO3

∆C (MeV−2) −1.02 × 10−5

∆CI2 (MeV−2) 1.03 × 10−5

Cq2 (MeV−4) 2.39 × 10−10

CI2,q2 (MeV−4) −4.80 × 10−11

CS2,q2 (MeV−4) 1.67 × 10−10

CS2,I2,q2 (MeV−4) −1.03 × 10−10

C(q·S)2 (MeV−4) −1.43 × 10−10

CI2,(q·S)2 (MeV−4) 1.80 × 10−10

CI=1
(iq×S)·k (MeV−4) 1.60 × 10−10

NLO3 results are in good agreement with partial wave results from Ref. [30].

We plot the S-D mixing parameter ε1 in the Stapp parameterization [31] in Fig. 3. The

pairs of points connected by dotted lines indicate pairs of coupled solutions in the spherical

wall formalism. While there are some deviations from the partial wave data from Ref. [30],

the discrepancy is consistent with effects produced by higher-order interactions. As expected

the S-wave results for LO3 are identical with LO2 results in Ref. [5]. In fact they agree in all
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FIG. 2: S-wave phase shifts versus center-of-mass momentum for LO3 and NLO3.
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FIG. 3: ε1 mixing angle versus center-of-mass momentum for LO3 and NLO3.

even-L partial wave channels. Results for NLO3 and NLO2 are also close though not exactly

the same. There are very small differences between the two due to NLO interactions which

are not completely separable into S-wave and P -wave terms at nonzero lattice spacing.

The P -wave phase shifts are shown in Fig. 4. We see that the NLO3 results match the

partial wave data quite accurately. Just as LO3 and LO2 agree in all even-L partial wave

channels, LO3 and LO1 agree in all odd-L partial wave channels. Results for NLO3 and

NLO1 are nearly identical, with only small differences due to the numerical fitting of NLO

coefficients on the lattice.
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FIG. 4: P -wave phase shifts versus center-of-mass momentum for LO3 and NLO3.

VI. AUXILIARY-FIELD FORMALISM FOR NEUTRON MATTER

So far we have been discussing general systems of low-energy nucleons with both protons

and neutrons. For computational efficiency we now specialize to the case where all nucleons

are neutrons. In this case all nucleon-nucleon interactions are in the isospin-triplet channel.

In the leading-order transfer matrix MLO3 we can drop the spin-triplet/isospin-singlet term

involving VS=1,I=0(~q) and make the simplifying replacements,

VS=0,I=1(~q) →
1

8
: ρa†,a(~q)ρa†,a(−~q) : −1

8
:
∑

S

ρa†,a
S (~q)ρa†,a

S (−~q) :, (60)

∑

S1,S2,I

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1,I(~n1)ρ

a†,a
S2,I(~n2) →

∑

S1,S2

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1

(~n1)ρ
a†,a
S2

(~n2).

(61)
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These modifications do not affect the interactions between neutrons and yields the simplified

transfer matrix,

MLO3 → : exp







−Hfreeαt −
CS=0,I=1αt

8L3

∑

~q

f(~q)

[

ρa†,a(~q)ρa†,a(−~q) −
∑

S

ρa†,a
S (~q)ρa†,a

S (−~q)
]

+
g2

Aα
2
t

8f 2
πqπ

∑

S1,S2

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1

(~n1)ρ
a†,a
S2

(~n2)







: . (62)

At next-to-leading order the simplified neutron transfer matrix is

MNLO3 → : exp







−Hfreeαt −
CS=0,I=1αt

8L3

∑

~q

f(~q)

[

ρa†,a(~q)ρa†,a(−~q) −
∑

S

ρa†,a
S (~q)ρa†,a

S (−~q)
]

− αt

[

∆CI=1

∆C
∆V +

CI=1
q2

Cq2

Vq2 +
CI=1

S2,q2

CS2,q2

VS2,q2 +
CI=1

(q·S)2

C(q·S)2
V(q·S)2 + V I=1

(iq×S)·k

]

+
g2

Aα
2
t

8f 2
πqπ

∑

S1,S2,

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1

(~n1)ρ
a†,a
S2

(~n2)







: . (63)

In the following we use these simplified forms for the leading-order and next-to-leading-order

transfer matrices.

The transfer matrices in Eq. (62) and (63) can be rewritten in terms of one-body inter-

actions with auxiliary fields. The exact equivalence between lattice formalisms with and

without auxiliary fields is detailed in [1, 32, 33]. We summarize the results here.

In neutron-neutron scattering only the neutral pion contributes to one-pion exchange.

We have been writing the rescaled neutral pion field as π′
3, but now we drop the subscript

“3” and simply write π′. Let M (nt)(π′, s, sS) be the leading-order auxiliary-field transfer

matrix at time step nt,

M (nt)(π′, s, sS) =: exp







−Hfreeαt +
gAαt

2fπ
√
qπ

∑

~n,S

∆Sπ
′(~n, nt)ρ

a†,a
S (~n)

+
1

2

√

−CS=0,I=1αt

∑

~n

s(~n, nt)ρ
a†,a(~n)

+
i

2

√

−CS=0,I=1αt

∑

~n,S

sS(~n, nt)ρ
a†,a
S (~n)







: . (64)
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We can write MLO3 as the normalized integral

MLO3
=

∫

Dπ′DsDsS e
−S

(nt)
ππ −S

(nt)
ss M (nt)(π′, s, sS)

∫

Dπ′DsDsS e−S
(nt)
ππ −S

(nt)
ss

, (65)

where S
(nt)
ππ is the piece of the instantaneous pion action in Eq. (28) containing the neutral

pion field at time step nt,

S(nt)
ππ (π′) =

1

2

∑

~n

π′(~n, nt)π
′(~n, nt) −

αt

qπ

∑

~n,l

π′(~n, nt)π
′(~n+ l̂, nt), (66)

and S
(nt)
ss is the auxiliary-field action at time step nt,

S(nt)
ss (s, sS) =

1

2

∑

~n,~n′

s(~n, nt)f
−1(~n−~n′)s(~n′, nt)+

1

2

∑

~n,~n′,S

sS(~n, nt)f
−1(~n−~n′)sS(~n′, nt), (67)

with

f−1(~n− ~n′) =
1

L3

∑

~q

1

f(~q)
e−i~q·(~n−~n′). (68)

The NLO interactions require some additional auxiliary fields. Let

U (nt)(ε) =
∑

~n

ερ(~n, nt)ρ
a†,a(~n) +

∑

~n,S

ερS
(~n, nt)ρ

a†,a
S (~n) +

∑

~n,S

ε∆Sρ(~n, nt)∆Sρ
a†,a(~n)

+
∑

~n,S,S′

ε∆SρS′ (~n, nt)∆Sρ
a†,a
S′ (~n) +

∑

~n,l

ε▽
2
l
ρ(~n, nt)▽

2
l ρ

a†,a(~n)

+
∑

~n,l,S

ε▽
2
l
ρS

(~n, nt)▽
2
l ρ

a†,a
S (~n) +

∑

~n,l

εΠl
(~n, nt)Π

a†,a
l (~n) +

∑

~n,l,S

εΠl,S
(~n, nt)Π

a†,a
l,S (~n).

(69)

With these extra fields and linear functional U (nt)(ε) we define

M (nt)(π′, s, sS, ε) =: exp







−Hfreeαt +
gAαt

2fπ
√
qπ

∑

~n,S

∆Sπ
′(~n, nt)ρ

a†,a
S (~n)

+
1

2

√

−CS=0,I=1αt

∑

~n

s(~n, nt)ρ
a†,a(~n)

+
i

2

√

−CS=0,I=1αt

∑

~n,S

sS(~n, nt)ρ
a†,a
S (~n) +

√
αtU

(nt)(ε)







: . (70)

We also define the normalized integral,

M (nt)(ε) =

∫

Dπ′DsDsS e
−S

(nt)
ππ −S

(nt)
ss M (nt)(π′, s, sS, ε)

∫

Dπ′DsDsS e−S
(nt)
ππ −S

(nt)
ss

. (71)
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When all ε fields are set to zero we recover MLO3 ,

M (nt)(0) = MLO3. (72)

To first order the NLO interactions in MNLO3 can be written as a sum of bilinear derivatives

of M (nt)(ε) with respect to the ε fields at ε = 0,

MNLO3 = MLO3

− 1

2
∆CI=1

∑

~n

δ

δερ(~n, nt)

δ

δερ(~n, nt)
M (nt)(ε)

∣

∣

∣

∣

ε=0

+
1

2
CI=1

q2

∑

~n

δ

δερ(~n, nt)

δ

δε
▽

2
l
ρ(~n, nt)

M (nt)(ε)

∣

∣

∣

∣

∣

ε=0

+ · · · . (73)

VII. EUCLIDEAN-TIME PROJECTION MONTE CARLO

We extract the properties of the ground state using Euclidean-time projection. We briefly

summarize the calculation in continuous-time notation before describing the transfer matrix

calculation at nonzero temporal lattice spacing. Let
∣

∣Ψfree
〉

be a Slater determinant of free-

particle standing waves in a periodic cube for N neutrons. Let HLO3 be the Hamiltonian

at leading order and HNLO3 be the Hamiltonian at next-to-leading order. Let HSU(2) 6π be

the same as HLO3 , but with one-pion exchange turned off by setting gA to zero. As the

notation suggests, HSU(2) 6π is invariant under an exact SU(2) intrinsic-spin symmetry. We

define a trial wavefunction

|Ψ(t′)〉 = exp
(

−HSU(2)6πt
′
)
∣

∣Ψfree
〉

. (74)

The operator exp
(

−HSU(2) 6πt
′
)

acts as an approximate low-energy filter. In the auxiliary-

field Monte Carlo calculation this part of the Euclidean-time propagation is positive definite

for any even number of neutrons invariant under the SU(2) intrinsic-spin symmetry [34, 35,

36]. With this trial wavefunction we define the amplitude,

Z(t) = 〈Ψ(t′)| exp (−HLO3t) |Ψ(t′)〉 , (75)

as well as the transient energy at Euclidean time t,

ELO3(t) = − ∂

∂t
[lnZ(t)] . (76)
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In the limit of large t,

lim
t→∞

ELO3
(t) = E0,LO3 , (77)

where E0,LO3 is the energy of the lowest eigenstate |Ψ0〉 of HLO3
with nonzero inner product

with |Ψ(t′)〉.
To compute the expectation value of some general operator O we define

ZO(t) = 〈Ψ(t′)| exp (−HLO3t/2)O exp (−HLO3t/2) |Ψ(t′)〉 . (78)

The expectation value of O for |Ψ0〉 is given by the large t limit,

lim
t→∞

ZO(t)

Z(t)
= 〈Ψ0|O |Ψ0〉 . (79)

Corrections to the energy at next-to-leading order can be computed using O = HNLO3−HLO3.

In that case

lim
t→∞

ZO(t)

Z(t)
= E0,NLO3 − E0,LO3 , (80)

where E0,NLO3 is the ground state energy at next-to-leading order.

On the lattice we construct |Ψ(t′)〉 using

|Ψ(t′)〉 =
(

MSU(2) 6π

)Lto
∣

∣Ψfree
〉

, (81)

where t′ = Ltoαt and Lto is the number of “outer” time steps. The amplitude Z(t) is defined

as

Z(t) = 〈Ψ(t′)| (MLO3)
Lti |Ψ(t′)〉 , (82)

where t = Ltiαt and Lti is the number of “inner” time steps. The transient energy

ELO3
(t+ αt/2) (83)

is given by the ratio of the amplitudes for t and t+ αt,

e−ELO3
(t+αt/2)·αt =

Z(t+ αt)

Z(t)
. (84)

The ground state energy E0,LO3 equals the asymptotic limit,

E0,LO3 = lim
t→∞

ELO3(t+ αt/2). (85)

We calculate these Euclidean-time projection amplitudes using auxiliary fields. For a

given configuration of auxiliary and pion fields, the contribution to the amplitude Z(t) is
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proportional to the determinant of an N×N matrix of one-body amplitudes, where N is the

number of neutrons. Integrations over auxiliary and pion field configurations are computed

using hybrid Monte Carlo. Details of the method can be found in Ref. [1, 32, 33, 37].

For the ground state energy at next-to-leading order we compute expectation values of

MNLO3
and MLO3

inserted in the middle of a string of MLO3
transfer matrices,

ZMNLO3
(t) = 〈Ψ(t′)| (MLO3)

Lti
/2 MNLO3 (MLO3)

Lti
/2 |Ψ(t′)〉 , (86)

ZMLO3
(t) = 〈Ψ(t′)| (MLO3)

Lti
/2 MLO3 (MLO3)

Lti
/2 |Ψ(t′)〉 . (87)

From the ratio of amplitudes,

ZMNLO3
(t)

ZMLO3
(t)

= 1 − ∆ENLO3(t)αt + · · · , (88)

we define the transient NLO energy correction ∆ENLO3(t). The ellipsis denotes terms which

are beyond first order in the NLO coefficients. The NLO ground state energy E0,NLO3 is

calculated using

E0,NLO3 = E0,LO3 + lim
t→∞

∆E0,NLO3(t). (89)

VIII. PRECISION TESTS OF MONTE CARLO SIMULATIONS

We use the two-neutron system to test the auxiliary-field Monte Carlo simulations. The

same observables are calculated using both auxiliary-field Monte Carlo and the exact transfer

matrix without auxiliary fields. We choose a small system so that stochastic errors are small

enough to expose disagreement at the 0.1% − 1% level. We choose the spatial length of

lattice to be L = 4 and set the outer time steps Lto = 2 and inner time steps Lti = 2. With

16 processors we generate a total of about 8 × 105 hybrid Monte Carlo trajectories. Each

processor runs completely independent trajectories, and we compute averages and stochastic

errors by comparing the results of all processors.

For the first test we choose
∣

∣Ψfree
〉

to be a spin-singlet state built from the Slater deter-

minant of standing waves |ψ1〉 and |ψ2〉 with

〈0| ai,j(~n) |ψ1〉 ∝ δi,0δj,1, 〈0| ai,j(~n) |ψ2〉 ∝ δi,1δj,1. (90)

For the second test we choose a spin-triplet state with standing waves

〈0| ai,j(~n) |ψ1〉 ∝ δi,0δj,1 cos 2πn1

L
, 〈0| ai,j(~n) |ψ2〉 ∝ δi,0δj,1 sin 2πn1

L
. (91)

22



TABLE III: Monte Carlo results versus exact transfer matrix calculations for the two-neutron spin

singlet S = 0 and spin triplet S = 1.

S = 0 (MC) S = 0 (exact) S = 1 (MC) S = 1 (exact)

ELO3(t + αt/2) [MeV] −2.90(2) −2.9112 28.3(2) 28.3658

∂(∆ENLO3
(t))

∂(∆CI=1)
[104 MeV3] 4.751(5) 4.7487 0.0003(7) 0

∂(∆ENLO3
(t))

∂
“

CI=1
q2

” [109 MeV5] 1.580(2) 1.5789 −1.025(4) −1.0264

∂(∆ENLO3
(t))

∂
“

CI=1
S2,q2

” [109 MeV5] −4.741(6) −4.7366 −1.023(6) −1.0264

∂(∆ENLO3
(t))

∂
“

CI=1
(q·S)2

” [108 MeV5] −5.788(8) −5.7818 2.51(2) 2.5533

∂(∆ENLO3
(t))

∂
“

CI=1
(iq×S)·k

” [107 MeV5] 0.018(13) 0 3.27(16) 3.4534

∆ENLO3(t) [MeV] −0.01655(8) −0.016440 −0.2455(9) −0.24559

Comparisons between Monte Carlo results (MC) and exact transfer matrix calculations

(exact) are shown in Table III. The numbers in parentheses are the estimated stochastic

errors. The agreement between Monte Carlo results and exact transfer calculations is

consistent with the estimated stochastic errors.

IX. RESULTS

We simulate the ground state for N = 8, 12, 16 neutrons on periodic cube lattices. For

N = 8 we consider cube lengths L = 4, 5, 6, 7 lattice units. For N = 12, we use L = 5, 6, 7,

and for N = 16 we use L = 6, 7. For each value of N and L we fix Lto at either 8 or 10 and

vary Lti from 2 up to 12. For
∣

∣Ψfree
〉

we take the Slater determinant formed by standing

waves

〈0| ai,j(~n) |ψ2k+1〉 ∝ δi,0δj,1fk(~n), 〈0| ai,j(~n) |ψ2k+2〉 ∝ δi,1δj,1fk(~n), (92)

where

f0(~n) = 1, f1(~n) = cos 2πn3

L
, f2(~n) = sin 2πn3

L
, f3(~n) = cos 2πn1

L
, (93)

f4(~n) = sin 2πn1

L
, f5(~n) = cos 2πn2

L
, f6(~n) = sin 2πn2

L
, f7(~n) = cos 2π(n1+n2)

L
. (94)

For N = 8 the values of k span the range 0 ≤ k ≤ 3. For N = 12, 0 ≤ k ≤ 5, and

for N = 16, 0 ≤ k ≤ 7. For each value of Lti a total of about 5 × 106 hybrid Monte
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Carlo trajectories are generated by 2048 processors, each running completely independent

trajectories. Averages and stochastic errors are computed by comparing the results of all

processors.

Let Efree
0 be the energy of the ground state for noninteracting neutrons. In Fig. 5 we

show the dimensionless ratios

ELO3(t)

Efree
0

,
∆ENLO3(t)

Efree
0

,
ELO3(t) + ∆ENLO3(t)

Efree
0

, (95)

versus Euclidean time t. These are labelled using the shorthand LO3, ∆NLO3, and NLO3

respectively. In addition to the Monte Carlo data we plot the asymptotic expressions,

ELO3(t)

Efree
0

≈ E0,LO3

Efree
0

+ Ae−δE·t, (96)

∆ENLO3(t)

Efree
0

≈ E0,NLO3 −E0,LO3

Efree
0

+Be−δE·t/2. (97)

ELO3(t) + ∆ENLO3(t)

Efree
0

≈ E0,NLO3

Efree
0

+ Ae−δE·t +Be−δE·t/2. (98)

The unknown coefficients A and B, energy gap δE, and ground state energies E0,LO3 and

E0,NLO3 are determined by least squares fitting. The e−δE·t dependence in Eq. (96) comes

from the contribution of low-energy excitations with energy gap δE above the ground state.

The e−δE·t/2 dependence in Eq. (97) comes from the matrix element of MNLO3 between the

ground state and low-energy excitations at energy gap δE.

The results of the asymptotic fits forE0,LO3/E
free
0 and E0,NLO3/E

free
0 are shown in Table IV.

On average the χ2 per degree of freedom for the fits is around 1. The error estimates for

E0,LO3/E
free
0 and E0,NLO3/E

free
0 are calculated by explicit simulation. We introduce Gaussian-

random noise scaled by the error bars of each data point. The fit is repeated many times

with the random noise included to estimate the one standard-deviation spread in the fit

parameters. In Table IV the Fermi momentum kF for each neutron spin is calculated from

the density of neutrons in the periodic cube,

kF =
1

L

(

3π2N
)1/3

. (99)

24



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 8, L = 4

E
0
/E

0fr
ee

t (MeV
-1

)

(a)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 8, L = 5

E
0
/E

0fr
ee

t (MeV
-1

)

(b)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 8, L = 6

E
0
/E

0fr
ee

t (MeV
-1

)

(c)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 8, L = 7

E
0
/E

0fr
ee

t (MeV
-1

)

(d)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 12, L = 5

E
0
/E

0fr
ee

t (MeV
-1

)

(e)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 12, L = 6

E
0
/E

0fr
ee

t (MeV
-1

)

(f)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 12, L = 7

E
0
/E

0fr
ee

t (MeV
-1

)

(g)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 16, L = 6

E
0
/E

0fr
ee

t (MeV
-1

)

(h)

LO3
∆NLO3

NLO3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3

N = 16, L = 7

E
0
/E

0fr
ee

t (MeV
-1

)

(i)

LO3
∆NLO3

NLO3

FIG. 5: Plots of the three energy ratios defined in Eq. (95) versus Euclidean projection time t.

These are labelled as LO3, ∆NLO3, NLO3 respectively.

X. DISCUSSION

A. Comparisons with other results

In Fig. 6 we compare the ground state energy ratio E0/E
free
0 for LO2, NLO2, LO3, and

NLO3 as a function of kF . We note two points here. First the difference between LO3 and

NLO3 values for E0/E
free
0 is relatively small over the range of kF plotted. This suggests that

the convergence of the effective field theory expansion appears reliable, and the difference
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TABLE IV: Fit results for E0,LO3/E
free
0 and E0,NLO3/E

free
0 .

N L kF (MeV) E0,LO3/E
free
0 E0,NLO3/E

free
0 χ2/d.f.

8 4 155 0.469(2) 0.436(2) 0.6

8 5 124 0.519(4) 0.496(4) 0.8

8 6 103 0.554(4) 0.537(4) 0.8

8 7 88 0.584(8) 0.571(8) 0.5

12 5 142 0.476(2) 0.443(2) 1.8

12 6 118 0.513(2) 0.490(2) 2.0

12 7 101 0.535(3) 0.518(3) 1.0

16 6 130 0.477(10) 0.450(10) 1.4

16 7 111 0.524(3) 0.503(3) 2.0
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FIG. 6: Comparison of the ground state energy ratio E0/E
free
0 for LO2, NLO2, LO3, and NLO3 as

a function of kF .

between LO3 and NLO3 values provides an upper estimate on the size of contributions at

higher orders. Second the results for NLO2 and NLO3 agree for kF less than 100 MeV.

This is the region where we expect the perturbative treatment of NLO2 corrections to be

accurate. The agreement with NLO3 provides some confidence in the effective field theory
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FIG. 7: Ground state energy ratio E0/E
free
0 for LO3 and NLO3 versus Fermi momentum kF . For

comparison we show results for FP 1981 [38], APR 1998 [39], CMPR v6 and v8′ 2003 [40], SP 2005

[41], GC 2007 [42], and GIFPS 2008 [43].

approach to dilute neutron matter. It is also an explicit test of model independence at fixed

lattice spacing as suggested in Ref. [4].

In Fig. 7 we compare ground state energies for LO3 and NLO3 with other results from

the literature: FP 1981 [38], APR 1998 [39], CMPR v6 and v8′ [40], SP 2005 [41], GC 2007

[42], and GIFPS 2008 [43]. Compared with other calculations our ground state energies are

slightly lower for kF near 130 MeV, but overall there is relatively good agreement.

B. Expansion near the unitarity limit

The unitarity limit is an idealized limit of attractive two-component fermions where the

S-wave scattering length is infinite and the range of the interaction is negligible. The S-

wave scattering length for neutron-neutron scattering is −18.5 fm, while the range of the

interaction is comparable to the Compton wavelength of the pion, m−1
π . The unitarity limit

is approximately realized in neutron matter when the average particle separation is between

these two length scales. This occurs at a Fermi momentum of about 80 MeV. In the
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unitarity limit the ground state has no dimensionful parameters other than particle density.

Therefore the ground state energy in the unitarity limit should obey a simple and universal

relation E0 = ξEfree
0 for some dimensionless constant ξ.

The unitarity limit has been reproduced in trapped cold atom experiments using 6Li and

40K. The scattering length is tuned to infinity using a Feshbach resonance and the system

is sufficiently dilute that the range of the interaction is negligible. Recent experimental

measurements for ξ give 0.32+10
−13 [44], 0.51(4) [45], 0.46+12

−05 [46], and 0.39(2) [47]. There have

been numerous analytic calculations for ξ varying over the range from 0.2 to 0.6 [48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58]. Several numerical calculations both on the lattice and in the

continuum find results varying from about 0.25 to 0.45 [59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71]. The most recent of these numerical calculations agree on a smaller window

between 0.30 and 0.40.

For finite S-wave scattering length a0 the deviation away from unitarity can be parame-

terized as
E0

Efree
0

≈ ξ − ξ1
kFa0

. (100)

As shorthand notation we define

f(kFa0) = ξ − ξ1
kFa0

. (101)

In the recent literature there is general agreement on the value of ξ1, ranging from about

0.8 to 1.0 [32, 60, 66, 67, 68, 72, 73]. In the following analysis we use the values ξ = 0.31

and ξ1 = 0.81 calculated in Ref. [66].

In addition to the corrections at finite scattering length we expect corrections proportional

to kF r0 due to the S-wave effective range r0. For neutron-neutron scattering r0 is 2.7 fm.

We also expect higher-order corrections away from the unitarity limit arising from higher

powers of 1/(kFa0) and kF r0, as well as other terms associated with the S-wave shape

parameter and triplet P -wave scattering volumes. In general we can write

E0/E
free
0 ≈ f(kFa0) + c1kF r0 + c2k

2
Fm

−2
π + c3k

3
Fm

−3
π + · · · . (102)

Due to the relatively narrow spread of kF values considered in our lattice simulations, it is

difficult to constrain c2 and c3 and higher coefficient powers. However we can constrain the

parameter c1.
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FIG. 8: Comparison of E0,NLO3/E
free
0 with various fits involving subsets of the unknown parameters

c1,c2,c3 as defined in Eq. (102).

If we set c2 = c3 = 0 and determine c1 from the data point with the smallest value for kF

we get

E0,NLO3/E
free
0 ≈ f(kFa0) + 0.14kF r0. (103)

If instead we set c3 = 0 and determine c1 and c2 simultaneously we find

E0,NLO3/E
free
0 ≈ f(kFa0) + 0.27kF r0 − 0.44k2

Fm
−2
π . (104)

As a third alternative if we set c2 = 0 and fit c1 and c3 simultaneously, we get

E0,NLO3/E
free
0 ≈ f(kFa0) + 0.17kF r0 − 0.26k3

Fm
−3
π . (105)

The results of these fits are shown in Fig. 8. Our simple analysis suggests a value for c1

in the range between 0.14 and 0.27. This is consistent with the value 0.15 for the same

coefficient found in Ref. [6].

XI. SUMMARY

We have presented lattice simulations for the ground state energy of dilute neutron matter

at next-to-leading order in chiral effective field theory. We have solved some problems that
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arose in recent work using leading-order lattice actions LO1 and LO2. LO1 involved point-

like “contact” interactions while LO2 used Gaussian-smeared “contact” interactions. In this

work we introduced a new action LO3 which equals LO2 in each S-wave channel and equals

LO1 in each P -wave channel. The action was constructed using projection operators for

the spin-singlet/isospin-triplet and spin-triplet/isospin-singlet channels. Using the spherical

wall method we computed phase shifts and mixing angles for the new lattice action up to

next-to-leading order and fitted all unknown operator coefficients.

In the auxiliary-field formalism we used Euclidean-time projection Monte Carlo to com-

pute the ground state energy of N = 8, 12, 16 neutrons in a periodic cube, covering a

density range from 2% to 10% of normal nuclear density. For kF less than 100 MeV we

found ground state energies at next-to-leading order that agreed with earlier lattice results

using the action NLO2. For kF greater than 100 MeV we found that the new action leads

to much smaller corrections at next-to-leading order. The difference between leading-order

and next-to-leading-order values provides an upper estimate on the size of contributions at

higher orders. Though we find somewhat lower values for the ground state energy near

kF = 130 MeV, our results are in general agreement with other calculations reported in the

literature.

The ground state energy ratio E0/E
free
0 was also analyzed as an expansion about the

unitarity limit. We considered corrections due to finite scattering length, nonzero effective

range, and higher-order effects. If we use the parameterization

E0/E
free
0 ≈ f(kFa0) + c1kF r0 + c2k

2
Fm

−2
π + c3k

3
Fm

−3
π + · · · , (106)

we find c1 in the range from 0.14 to 0.27. In principle the coefficient c1 is a universal

constant that can be measured in any two-component fermionic system near the unitarity

limit. Explicit tests of this universality may be a subject for future investigation. With

regard to further investigations of neutron matter, future work on lattice simulations should

be considered at next-to-next-to-leading order in chiral effective field theory. Simulations

should also be done at smaller and larger lattice spacings to check independence on the

lattice spacing and to probe both higher and lower densities.
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[64] D. Lee and T. Schäfer, Phys. Rev. C73, 015201 (2006), nucl-th/0509017.
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