39 research outputs found

    Prospective purification of perivascular presumptive mesenchymal stem cells from human adipose tissue:process optimization and cell population metrics across a large cohort of diverse demographics

    Get PDF
    BACKGROUND: Adipose tissue is an attractive source of mesenchymal stem cells (MSC) as it is largely dispensable and readily accessible through minimally invasive procedures such as liposuction. Until recently MSC could only be isolated in a process involving ex-vivo culture and their in-vivo identity, location and frequency remained elusive. We have documented that pericytes (CD45-, CD146+, and CD34-) and adventitial cells (CD45-, CD146-, CD34+) (collectively termed perivascular stem cells or PSC) represent native ancestors of the MSC, and can be prospectively purified using fluorescence activated cell sorting (FACS). In this study we describe an optimized protocol that aims to deliver pure, viable and consistent yields of PSC from adipose tissue. We analysed the frequency of PSC within adipose tissue, and the effect of patient and procedure based variables on this yield. METHODS: Within this twin centre study we analysed the adipose tissue of n = 131 donors using flow cytometry to determine the frequency of PSC and correlate this with demographic and processing data such as age, sex, BMI and cold storage time of the tissue. RESULTS: The mean number of stromal vascular fraction (SVF) cells from 100 ml of lipoaspirate was 34.4 million. Within the SVF, mean cell viability was 83 %, with 31.6 % of cells being haematopoietic (CD45+). Adventitial cells and pericytes represented 33.0 % and 8 % of SVF cells respectively. Therefore, a 200 ml lipoaspirate would theoretically yield 23.2 million viable prospectively purified PSC - sufficient for many reconstructive and regenerative applications. Minimal changes were observed in respect to age, sex and BMI suggesting universal potential application. CONCLUSIONS: Adipose tissue contains two anatomically and phenotypically discreet populations of MSC precursors – adventitial cells and pericytes – together referred to as perivascular stem cells (PSC). More than 9 million PSC per 100 ml of lipoaspirate can be rapidly purified to homogeneity using flow cytometry in clinically relevant numbers potentially circumventing the need for purification and expansion by culture prior to clinical use. The number and viability of PSC are minimally affected by patient age, sex, BMI or the storage time of the tissue, but the quality and consistency of yield can be significantly influenced by procedure based variables. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0302-7) contains supplementary material, which is available to authorized users

    Q&A:Mesenchymal stem cells - where do they come from and is it important?

    Get PDF
    Mesenchymal stem — or stromal — cells (MSCs) have been administered in hundreds of clinical trials for multiple indications, making them some of the most commonly used selected regenerative cells. Paradoxically, MSCs have also long remained the least characterized stem cells regarding native identity and natural function, being isolated retrospectively in long-term culture. Recent years have seen progress in our understanding of the natural history of these cells, and candidate native MSCs have been identified within fetal and adult organs. Beyond basic knowledge, deciphering the biology of innate MSCs may have important positive consequences for the therapeutic use of these cells

    Inflammation-induced formation of fat-associated lymphoid clusters

    Get PDF
    Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses

    Increased Abundance of M cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    Get PDF
    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases
    corecore