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Abstract

Many natural prion diseases of humans and animals are considered to be acquired through

oral consumption of contaminated food or pasture. Determining the route by which prions

establish host infection will identify the important factors that influence oral prion disease

susceptibility and to which intervention strategies can be developed. After exposure, the

early accumulation and replication of prions within small intestinal Peyer’s patches is essen-

tial for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the

prions must first cross the gut epithelium. M cells are specialised epithelial cells within the

epithelia covering Peyer’s patches that transcytose particulate antigens and microorgan-

isms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which

RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence

of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of

disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer

of prions across the gut epithelium in order to establish host infection. Since pathogens,

inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also

influence oral prion disease susceptibility. Mice were therefore treated with RANKL to

enhance M cell density in the gut. We show that prion uptake from the gut lumen was

enhanced in RANKL-treated mice, resulting in shortened survival times and increased dis-

ease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these

data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose den-

sity in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest

that factors which alter M cell-density in the gut epithelium may be important risk factors

which influence host susceptibility to orally acquired prion diseases.
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Author Summary

Prion diseases are infectious neurodegenerative disorders that affect humans and animals.

Many natural prion diseases are orally acquired through consumption of contaminated

food or pasture. An understanding of how prions infect the intestine will help identify fac-

tors that influence disease susceptibility and allow the development of new treatments.

After oral infection prions first accumulate within the lymphoid tissues that line the intes-

tine (known as Peyer’s patches) before they spread to the brain where they cause neurode-

generation. To do this, the prions must first cross the intestinal epithelium, a single layer

of cells that separates the body from the gut contents. M cells are found within the epithe-

lium that covers the Peyer’s patches and are specialised to transport large particles and

whole bacteria across the gut epithelium. We show that M cells act as the gatekeepers of

oral prion infection. In the absence of M cells, oral prion infection is blocked, whereas an

increase in M cells increases the risk of prion infection and shortens the disease duration.

Therefore, our data demonstrate that factors such as pathogen infection, inflammation

and aging, which alter the abundance of M cells in the intestine, may be important risk

factors which influence susceptibility to orally-acquired prion infections.

Introduction

Prion diseases (transmissible spongiform encephalopathies) are a unique group of subacute

neurodegenerative diseases that affect humans and animals. During prion disease, aggrega-

tions of PrPSc, an abnormally folded isoform of cellular PrP (PrPC), accumulate in affected tis-

sues. Prion infectivity co-purifies with PrPSc and constitutes the major, if not sole, component

of the infectious agent [1–3]. Many natural prion diseases, including natural sheep scrapie,

bovine spongiform encephalopathy (BSE), chronic wasting disease in cervids, and variant

Creutzfeldt-Jakob disease in humans (vCJD), are acquired peripherally, such as by oral con-

sumption of prion-contaminated food or pasture. The precise mechanism by which orally-

acquired prions are propagated from the gut lumen across the epithelium to establish host

infection is uncertain. In the U.K. relatively few vCJD cases have fortunately occurred despite

widespread dietary exposure to BSE [4], suggesting that the acquisition of prions from the gut

lumen may differ between individuals. Further studies are clearly necessary to precisely char-

acterise the cellular route that prions exploit to establish infection after oral exposure, and how

alterations to this cellular route, both intrinsic and extrinsic, can affect disease susceptibility.

Treatments which prevent the accumulation and replication of prions in host lymphoid tissues

can significantly reduce disease susceptibility [5–9]. Therefore, identification of the cellular

route by which prions are first transported across the gut epithelium to achieve host infection

will identify an important factor which influences oral prion disease susceptibility and to

which intervention strategies can be developed.

Following oral exposure the early accumulation and replication of prions upon follicular

dendritic cells (FDC) within the gut associated lymphoid tissues (GALT), such as Peyer’s

patches of the small intestine, is essential for efficient neuroinvasion [7, 10–13]. FDC are a

unique subset of stromal cells resident within the primary B cell follicles and germinal cen-

tres of lymphoid tissues [14]. After amplification upon the surface of FDC [15], the prions

then infect neighbouring enteric nerves and spread along these to the CNS (a process

termed neuroinvasion) where they ultimately cause neurodegeneration and death of the

host [16–19].
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The follicle-associated epithelia (FAE) which covers the lumenal surfaces of the Peyer’s

patches contains a unique population of epithelial cells, termed M cells. These highly phago-

cytic epithelial cells are specialized for the trans-epithelial transfer of particulate antigens and

microorganisms from the gut lumen (termed transcytosis) [20], an important initial step in the

induction of efficient mucosal immune responses against certain pathogenic bacteria [21, 22]

and the commensal bacterial flora [23]. A variety of bacterial and viral pathogens including

Brucella abortus [24], Salmonella Typhimurium [25], Yersinia enterocolitica [26], norovirus

[27, 28] and reovirus [28] appear to exploit the transcytotic activity of M cells to cross the gut

epithelium and infect the host. The food-borne botulinum neurotoxin [29] has also been sug-

gested to exert its toxicity after transcytosis by M cells [29]. Independent studies suggest orally

administered prions may similarly be transported by M cells into host tissues [9, 30–32] and

that this transport may be important to establish host infection [9]. Other studies have also

suggested that prions can be transported across the gut epithelium via enterocytes, indepen-

dently of M cells [16, 33, 34], however to what extent enterocyte-transported prions contribute

to the establishment of host infection has not been assessed.

The differentiation of M cells from uncommitted precursors in the intestinal crypts is crit-

ically dependent on stimulation from the cytokine known as RANKL (receptor activator of

nuclear factor-κB ligand). This cytokine is expressed by subepithelial stromal cells beneath

the FAE in Peyer’s patches, and signals via its receptor RANK (receptor activator of nuclear

factor-κB) which is expressed by epithelial cells throughout the intestine [35]. Accordingly,

M cell-differentiation is blocked in RANKL-deficient mice or following in vivo RANKL-neu-

tralization with anti-RANKL antibody [35]. RANKL stimulation induces a program of gene

expression in intestinal epithelial cells which includes the transcription factor SPIB. Expres-

sion of SPIB by intestinal epithelial cells is essential for their differentiation and functional

maturation into M cells [22, 36, 37]. We have previously reported that the early accumulation

of prions upon FDC in Peyer’s patches and subsequent neuroinvasion were blocked in mice

in which M cells were transiently depleted by RANKL-neutralization using anti-RANKL

antibody [9]. However, since RANKL-RANK signalling has multiple roles in the immune

system, a more refined model is required to specifically determine the role of M cells in oral

prion disease pathogenesis. In the current study a unique conditional knockout mouse

model was used in which RANK expression was specifically deleted only in the intestinal epi-

thelium (RANKΔIEC mice) [23, 38]. In these mice the complete loss of M cells prevents M

cell-mediated antigen uptake from the gut lumen, without altering other RANKL-RANK sig-

nalling events required for normal immune development and function [23, 38]. Using these

mice our data clearly show that M cells are critically required for the initial trans-epithelial

transfer of prions across the gut epithelium into Peyer’s patches in order to establish host

infection.

Certain pathogenic bacteria [25, 39] or exposure to inflammatory stimuli such as cholera

toxin [40] can significantly increase the density of M cells in the intestine. Inflammation or

pathogen infection can also influence prion disease pathogenesis by enhancing the uptake, or

expanding the distribution, of prions within the host [11, 41–43]. This raised the hypothesis

that exposure to inflammatory stimuli that enhance M cell-density might increase oral prion

disease susceptibility by enhancing the uptake of prions from the gut lumen. We show that

increased M cell-density at the time of oral exposure dramatically enhanced the uptake of pri-

ons from the gut lumen, decreased survival times and increased disease susceptibility by

approximately 10-fold. Our data provide a significant advance in our understanding of how

prions exploit M cells to initially infect Peyer’s patches and how factors that increase the den-

sity of M cells in the gut epithelium, such as concurrent pathogen infection, may have the

potential to increase susceptibility to orally-acquired prion infection.

Increased M Cell-Density Exacerbates Oral Prion Disease Susceptibility
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Results

RANK-deficiency only in the intestinal epithelium specifically blocks M

cell-development

Our previous study showed that oral prion infection was blocked after transient M cell-deple-

tion by treatment with anti-RANKL antibody, implying a functional role for M cells in the traf-

ficking of prions from the lumen into GALT in vivo [9]. Although the major phenotype

observed in the intestine was a transient loss of mature M cells, RANKL-RANK signalling is

also important in immune system and lymphoid tissue development. Therefore, systemic

RANKL neutralization by treatment with anti-RANKL antibody could have affected other

important cellular processes involved in prion pathogenesis. To exclude these, we used a more

refined model of M cell-deficiency, RANKΔIEC mice [23, 38], to further elucidate the role of M

cells in the transport of prions from the intestinal lumen into GALT. These mice are specifi-

cally deficient in Tnfrsf11a (which encodes RANK) only in Vil1-expressing intestinal epithelial

cells. As previously published [23], whole-mount immunostaining for the mature M cell

marker glycoprotein 2 (GP2; [21, 22]) revealed an absence of GP2+ M cells in the FAE of the

Peyer’s patches of RANKΔIEC mice compared to control (RANKF/F) mice (Fig 1A & 1B). Coin-

cident with the loss of RANK expression in the gut epithelium was a significant reduction in

area of the FAE (Fig 1C).

Assessment of the uptake of fluorescent latex microbeads from the gut lumen into Peyer’s

patches is a reliable in vivo method to compare the functional ability of M cells to acquire and

transcytose particulate antigens. Here, RANKΔIEC mice and RANKF/F control mice (n = 3/

group) were orally gavaged with 2x1011 200 nm fluorescent microbeads, and 24 h later the

number of microbeads in their Peyer’s patches quantified by fluorescence microscopy. This

duration was selected to ensure sufficient time for the beads to transit through the intestine

and be transcytosed by M cells in the FAE overlying the Peyer’s patches [13]. Coincident with

the absence of mature GP2+ M cells, RANKΔIEC mice had substantially less fluorescent

microbeads within the subepithelial dome (SED) regions of their Peyer’s patches when com-

pared to controls (Fig 1D), indicating a dramatic reduction in the ability to sample particulate

antigen from the gut lumen.

RANK-dependent GP2+ M cells have been described in the epithelium of the nasal associ-

ated lymphoid tissue (NALT) [44, 45]. The abundance of GP2+ M cells in the NALT was unaf-

fected in RANKΔIEC mice (Fig 1E), highlighting the intestinal specificity of the model.

In addition to being transported through M cells, prions have also been observed trafficking

into Peyer’s patches through the large LAMP1+ endosomes of FAE enterocytes [16]. Immuno-

histochemical (IHC) analysis of LAMP1 expression showed that these endosomes were still

present in the FAE of RANKΔIEC mice (Fig 1F). If the presence of these endosomes in the FAE

was dependent on RANKL-RANK signalling, we reasoned that the abundance of LAMP1+

immunostaining would be decreased in the FAE of RANKΔIEC mice. However, morphometric

analysis indicated equivalent areas of LAMP1+ immunostaining in the FAE of RANKΔIEC and

RANKF/F mice (Fig 1G). These data suggest that the presence of LAMP1+ endosomes in the

FAE was not RANKL-RANK signalling dependent.

Antigens that are transcytosed by M cells are released into their basolateral pockets where

they are sampled by lymphocytes and mononuclear phagocytes (MNP; a heterogeneous popu-

lation of macrophages and classical dendritic cells; DC) [46–48]. The acquisition of prions by

MNP such as CD11c+ classical DC may mediate their initial transport to FDC [8, 16, 49], and

the subsequent transfer of prions from FDC to the peripheral nervous system [50–52]. IHC

and morphometric analysis revealed a significant reduction in the % area of CD11c-specific

immunostaining in the SED of the Peyer’s patches from RANKΔIEC mice (Fig 2A & 2B),

Increased M Cell-Density Exacerbates Oral Prion Disease Susceptibility
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Fig 1. RANKΔIEC mice specifically lack intestinal M cells. A) Peyer’s patches from RANKF/F and RANKΔIEC mice were whole-mount

immunostained to detect M cells (GP2+ cells, green) and F-actin (blue) as a counterstain. The broken line indicates the boundary of the follicle

associated epithelium (FAE) overlying the Peyer’s patches. V, villi. This immunohistochemical (IHC) analysis indicated an absence of GP2+ M cells in

the FAE of RANKΔIEC mice. B) Morphometric analysis confirmed that the number of GP2+ cells/FAE was significantly reduced in RANKΔIEC mice

(P<0.0001, Mann-Whitney U test). C) The size of the FAE area was also significantly reduced in RANKΔIEC mice (P<0.0001, Student’s t-test; data

Increased M Cell-Density Exacerbates Oral Prion Disease Susceptibility
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whereas the % area of CD68-specific immunostaining (indicative of tissue macrophages) was

equivalent in RANKΔIEC and RANKF/F mice (Fig 2A & 2C). Analysis of the intestinal lamina

propria (LP) showed a similar trend (Fig 2D–2F).

Following replication upon FDC, the prions subsequently infect enteric nerves (both sym-

pathetic and parasympathetic) to reach the CNS where they ultimately cause neurodegenera-

tive disease [16, 18]. Our IHC analysis of the expression of the neuronal synaptic vesicle

marker synaptophysin 1 suggested that the magnitude of the enteric innervation in the LP was

similar in the intestines of RANKΔIEC and RANKF/F mice (Fig 2G & 2H).

Together these data demonstrate that RANKΔIEC mice represent a refined model in which

to study the specific role of M cells in oral prion disease pathogenesis.

Prion accumulation and dissemination after intra-peritoneal injection is

preserved in RANKΔIEC mice

The early replication of many prion strains upon FDC within the B cell-follicles of the draining

lymphoid tissues is essential for their efficient transmission to the CNS after peripheral expo-

sure [5–7, 15]. FDC in mice characteristically express high levels of CD21/35 (complement

receptors 2 & 1, respectively). Our IHC analysis showed that the area of CD21/35-specific

immunostaining in Peyer’s patches of 10 wk old RANKΔIEC and RANKF/F mice was similar

(Fig 3A & 3B), suggesting that the size of the FDC networks (CD21/35+ cells) in the Peyer’s

patches of each mouse strain was equivalent. The replication of prions upon FDC is critically

dependent on their expression of PrPC [15, 53, 54]. Morphometric analysis also indicated that

the magnitude of the PrPC-expression co-localized upon CD21/35+ FDC in the Peyer’s patches

(Fig 3A & 3C) and mesenteric lymph nodes (MLN) (Fig 3D & 3E) of RANKΔIEC mice and

RANKF/F mice was similar.

We next determined whether the FDC in the lymphoid tissues of RANKΔIEC mice were

capable of accumulating prions to a similar extent as those of control mice. After injection by

the intra-peritoneal (i.p.) route high levels of prion accumulation and replication are first

detected in the spleen within 35 d post infection (dpi) [53]. The prions are then subsequently

disseminated around the host via the blood and lymph to most other secondary lymphoid tis-

sues [55]. Furthermore, by 140 dpi the prions are also detectable within Peyer’s patches. Since

the prions do not need to cross the gut epithelium to eventually infect the Peyer’s patches after

injection by the i.p. route, RANKΔIEC and RANKF/F were injected with a 1% dose of ME7 scra-

pie prions via this route and tissues collected at 140 dpi, to determine whether the FDC in the

lymphoid tissues of RANKΔIEC mice were capable of accumulating prions. Prion disease-spe-

cific accumulations of PrP (referred to as PrPd) were detected by immunostaining for the

abnormal aggregates of PrP characteristically present only in affected tissues [6, 9, 11, 13, 53,

56], complimented with paraffin-embedded tissue (PET) blot analysis of adjacent membrane-

bound sections to confirm that these aggregates contained relatively proteinase-K (PK)-

derived from 4 FAE/mouse, n = 3–5 mice/group). D) To compare the functional ability of M cells in the FAE of RANKΔIEC and RANKF/F control mice to

transcytose particulate antigens, mice were orally gavaged with 200 nm fluorescent microbeads and 24 h later, the presence of the microbeads in their

Peyer’s patches was determined by fluorescence microscopy. The uptake of microbeads into the Peyer’s patches of RANKΔIEC mice was significantly

impaired when compared to RANKF/F mice (P<0.0001, Mann-Whitney U test; data derived from 21–31 sections of Peyer’s patches/mouse, n = 3 mice/

group). E) Whole-mount IHC analysis revealed that GP2+ M cells (green) were abundant in the nasal associated lymphoid tissues of RANKF/F and

RANKΔIEC mice. F-actin (blue) was used as a counterstain. The boxed area in the left-hand images is shown at higher magnification in the right-hand

images. F) IHC analysis was used to compare the presence of large LAMP1+ endosomes (red) within enterocytes in FAE of Peyer’s patches from

RANKF/F and RANKΔIEC mice. Sections were counterstained with DAPI (blue) to detect cell nuclei. The broken lines indicate the boundary of the FAE.

SED, subepithelial dome. G) Morphometric analysis revealed that the area of the LAMP1+ immunostaining in the FAE of RANKF/F and RANKΔIEC mice

was similar (P = 0.258, Student’s t-test; data derived from 2–8 FAE/mouse, n = 3 mice/group), suggesting that the formation of the large LAMP1+

endosomes in FAE enterocytes was not influenced by RANK-deficiency in the gut epithelium.

doi:10.1371/journal.ppat.1006075.g001
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Fig 2. Effect of intestinal epithelial cell-specific RANK-deficiency on mononuclear phagocytes and innervation in the

lamina propria. A) Immunohistochemical (IHC) comparison of the distribution of CD11c+ (green) and CD68+ (red) mononuclear

phagocytes (indicative of classical DC and tissue macrophages, respectively) in Peyer’s patches from RANKF/F and RANKΔIEC

mice. Sections were counterstained with DAPI (blue) to detect cell nuclei. Broken line shows the lumenal boundary of the follicle

associated epithelium. SED, subepithelial dome. Morphometric analysis revealed that (B) the % area of the SED occupied by

Increased M Cell-Density Exacerbates Oral Prion Disease Susceptibility
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resistant prion disease-specific PrPSc [57]. Abundant accumulations of PrPSc were evident in

association with FDC (CD21/35+ cells) in the Peyer’s patches, MLN and spleens of RANKΔIEC

and RANKF/F mice (Fig 4A–4C). These data clearly show that the FDC in the Peyer’s patches,

MLN and spleen of RANKΔIEC mice were functionally capable of acquiring and accumulating

prions, and that the dissemination of prions between lymphoid tissues was not impaired.

Importantly, these data also suggest that the cause of any difference in prion pathogenesis

between RANKΔIEC and RANKF/F mice observed after oral exposure would be restricted to

effects on M cells in the gut epithelium.

RANKΔIEC mice are resistant to oral prion infection

Within weeks after oral exposure, high levels of ME7 scrapie prions first accumulate upon

FDC in the Peyer’s patches and subsequently spread to the MLN and spleen [7–9, 11, 13]. The

initial replication of prions upon FDC in the Peyer’s patches is essential for the efficient trans-

mission of disease to the CNS [7, 11, 13]. In order to determine the effect of specific M cell-

deficiency on oral prion disease pathogenesis, RANKΔIEC mice and RANKF/F (control) mice

were orally exposed to a moderate dose of ME7 scrapie prions (50 μl of a 1% brain homogenate

from a mouse clinically-affected with ME7 scrapie prions; [7, 9, 11, 13, 58]). At intervals after

exposure the accumulation of PrPd and PrPSc in tissues from 4 mice/group were compared by

IHC and PET blot analysis, respectively, as above. As anticipated, at 105 dpi, abundant accu-

mulations of PrPd (middle row, brown) and PrPSc (lower row, black) were detected in associa-

tion with FDC (CD21/35+ cells, upper row, brown) in the Peyer’s patches, MLN and spleen of

RANKF/F control mice (Fig 5A). However, no PrPSc accumulations were detected in the same

tissues from RANKΔIEC mice (Fig 5A). Mice on a C57BL/6 background typically succumb to a

moderate dose of ME7 scrapie prions by ~340 d after oral exposure [9, 13]. However, RAN-

KΔIEC mice (n = 8) remained free of the clinical signs of prion disease up to at least 440 dpi, at

which point no PrPd or PrPSc was detected in their Peyer’s patches, MLN, spleen (Fig 5B), spi-

nal cords or brains (Fig 5C) by IHC and PET blot analysis. Together these data clearly show

that M cells are essential for the initial uptake of prions from the gut lumen into Peyer’s

patches in order to establish host infection, since oral prion disease pathogenesis was blocked

in the specific absence of M cells in RANKΔIEC mice.

RANKL-treatment promotes M cell development in the FAE and villous

epithelium

Certain pathogen infections or inflammatory conditions can enhance M cell-differentiation

within the intestine [25, 39, 40]. We therefore reasoned that alterations to M cell-density in the

gut epithelium may significantly alter oral prion disease pathogenesis and susceptibility. The

density of functionally mature M cells in the intestine can be promoted in mice through

CD11c+ immunostaining was significantly reduced in RANKΔIEC mice (P < 0.001, Mann-Whitney U test), whereas (C) the % area

occupied by CD68+ immunostaining was similar between each mouse group (P = 0.201, Student’s t-test; data derived from 1–10

SED/mouse, n = 6–7 mice/group). D) IHC comparison of the distribution of CD11c+ (green) and CD68+ (red) mononuclear

phagocytes in the lamina propria (LP) of RANKF/F and RANKΔIEC mice. Sections were counterstained with DAPI (blue).

Morphometric analysis revealed that (E) the % area of the CD11c+ immunostaining was also significantly reduced in the LP of

RANKΔIEC mice (P < 0.025, Mann-Whitney U test), whereas (F) the % area of CD68+ immunostaining was similar (P = 0.718,

Student’s t-test; data derived from 1–6 LP areas/mouse, n = 7 mice/group). G) Sections of intestine from RANKF/F and RANKΔIEC

mice were immunostained to identify synaptophysin 1 (red) within synaptic vesicles, enabling the enteric innervation in the gut wall

to be compared. Sections were counterstained with DAPI (blue). H) Morphometric analysis revealed that the % area of

synaptophysin 1+ immunostaining within the LP of RANKF/F and RANKΔIEC mice was similar (P = 0.433, Mann-Whitney U test; data

derived from 2 LP areas/mouse, n = 4 mice/group). These data implied that RANK-deficiency in the gut epithelium did not influence

the enteric innervation in the gut wall.

doi:10.1371/journal.ppat.1006075.g002
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exogenous administration of RANKL [22, 35]. Recombinant RANKL was prepared and its

ability to stimulate M cell-differentiation was confirmed in in vitro intestinal enteroids derived

from RANKΔIEC and RANKF/F mice [23, 36]. As anticipated, RANKL-treatment of enteroids

from RANKF/F (control) mice induced robust expression of several M cell-associated genes

Fig 3. Follicular dendritic cells status in RANKΔIEC mice. Immunohistochemical (IHC) and morphometric analyses were used to

compare follicular dendritic cell (FDC) status in the Peyer’s patches and mesenteric lymph nodes (MLN) of RANKΔIEC and RANKF/F control

mice. A) IHC comparison of CD21/35 (red) and PrPC (blue, lower panels) expression by FDC in the B cell-follicles (B220+ cells, green) of

Peyer’s patches from RANKF/F and RANKΔIEC mice. Broken lines show the lumenal surface of the follicle-associated epithelium. V, villi (V).

Cell nuclei in the upper panels were counterstained with DAPI (blue). B) Morphometric analysis revealed that the area of the CD21/35+

immunostaining in Peyer’s patches from RANKF/F and RANKΔIEC mice was similar, implying that the FDC networks (CD21/35+ cells) in

these tissues were of equivalent size (P = 0.591, Student’s t-test; data derived from 2–9 B cell-follicles/mouse, n = 7 mice/group). C)

Morphometric analysis suggested that the % area of PrPC immunostaining within the FDC networks was similar in Peyer’s patches from

RANKF/F and RANKΔIEC mice (P = 0.573, Mann-Whitney U test; data derived from 2–9 B cell-follicles/mouse, n = 7 mice/group). D)

Sections of MLN from RANKF/F and RANKΔIEC mice were immunostained to detect B cells (B220, green), FDC (CD21/35+ cells, red) and

PrPC (blue). E) Morphometric analysis also revealed that the % area of PrPC immunostaining within the FDC networks was similar in the

MLN from RANKF/F and RANKΔIEC mice (P = 0.689, Student’s t-test; data derived from 3 B cell-follicles/mouse, n = 4 mice/group).

doi:10.1371/journal.ppat.1006075.g003
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Fig 4. Prion accumulation upon follicular dendritic cells (FDC) after intra-peritoneal injection is preserved in RANKΔIEC mice.

Since prions do not need to cross the gut epithelium to eventually infect Peyer’s patches after injection by the intra-peritoneal route,

RANKΔIEC and RANKF/F (control) were injected with a 1% dose of ME7 scrapie prions via this route and tissues collected at 140 d post-

infection, to determine whether the FDC in the lymphoid tissues of RANKΔIEC mice were capable of accumulating prions. High levels of

disease-specific PrP (PrPd, brown, middle rows) were detected in association with FDC (CD21/35+ cells, brown, upper panels) in the
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(Marcksl1, Anxa5, Spib, Ccl9, and Gp2; [22]) without significantly altering expression of genes

associated with other intestinal lineages, including Paneth cells (Lyz1, Lyz2) and intestinal

stem cells (Lgr5) (S1 Fig). No induction of expression of M cell-specific genes was observed in

RANKL-treated enteroids derived from RANKΔIEC mice.

Next, C57BL/6 mice (n = 4/group) were treated daily with RANKL to induce M cell-differ-

entiation and tissues harvested on d 3, coincident with the peak period of induction of M cell

gene expression in the gut epithelium [22, 35]. A parallel group of mice were treated with PBS

as a control. IHC and morphometric analysis revealed that RANKL-treatment induced a sig-

nificant increase in the number of GP2-expressing (mature) and SPIB-expressing (differentiat-

ing and mature) M cells within the FAE of Peyer’s patches (Fig 6A–6C) and also in the villous

epithelium (Fig 6D–6F). This increase in M cells was associated with increased functional abil-

ity to acquire particulate antigen from the gut lumen, demonstrated by a significant increase in

the number of 200 nm microbeads transcytosed into the SED of Peyer’s patches and villous

cores 24 h after their administration by oral gavage (Fig 6G–6I). Although a small increase in

the area of LAMP1+ immunostaining was observed in the FAE after RANKL treatment, the

abundance of LAMP1+ immunostaining was unchanged in the villous epithelium (Fig 6J–6L).

We also determined whether RANKL-treatment affected other important parameters con-

sidered to be required for prion infection. IHC and morphometric analysis suggested there

was no significant difference in the area of CD21/35+ (indicative of FDC size) or PrPC+ immu-

nostaining in the Peyer’s patches (S2A–S2C Fig) or MLN (S2D & S2E Fig) of RANKL-treated

mice when compared to PBS-treated controls. This implied that RANKL-treatment had no sig-

nificant effect on FDC status in the Peyer’s patches or MLN.

IHC and morphometric analysis also indicated that the % area of CD11c+ immunostaining

in the SED of the Peyer’s patches (Fig 7A & 7B) and the LP (Fig 7D & 7E) did not differ

between tissues from PBS- and RANKL-treated mice. Although the % area of CD68+ immu-

nostaining was equivalent in the SED of the Peyer’s patches (Fig 7A & 7C), a significant

increase was observed in the LP of RANKL-treated mice (Fig 7D & 7F). No difference in the %

area of synaptophsyin 1+ immunostaining was observed in the LP (Fig 7G & 7H), suggesting

that RANKL-treatment did not significantly affect the magnitude of the enteric innervation in

the intestine.

Together, these data demonstrate that RANKL-treatment promotes M cell-differentiation

in the FAE of Peyer’s patches and villous epithelium without significant effects on other key

cells (FDC, CD11c+ cells and enteric nerves) considered to play an important role in oral

prion disease pathogenesis.

Increased M cell-density enhances susceptibility to oral prion disease

To determine whether increased M cell-density in the intestine altered oral prion disease sus-

ceptibility, groups of C57BL/6 mice were treated daily with RANKL (or PBS as a control) for 4

d as above, and between the 3rd and 4th treatments (coincident with the peak period of induc-

tion of M-cell gene expression in the gut epithelium [22, 35]) the mice were orally exposed to

either a moderate (1%) or limiting (0.1%) dose of ME7 scrapie prions. Exposure of C57BL/6

mice to a 1% dose of prions typically yields a clinical disease incidence of 100% in the recipi-

ents, whereas a 0.1% dose has a much lower incidence allowing the effects of RANKL-treat-

ment on both survival time and prion disease susceptibility to be assessed. As anticipated,

Peyer’s patches (A), mesenteric lymph nodes (MLN, B), and spleens (C) of mice from each group. Sections were counterstained with

haematoxylin to detect cell nuclei (blue). Analysis of adjacent sections by PET immunoblot analysis confirmed the presence of prion-

specific PK-resistant PrPSc (blue/black). Images are representative of 4 mice/group.

doi:10.1371/journal.ppat.1006075.g004
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Fig 5. PrPSc accumulation upon follicular dendritic cells (FDC) after oral prion exposure is blocked in RANKΔIEC mice. In order to determine the

effect of specific M cell-deficiency on oral prion pathogenesis, RANKΔIEC mice and RANKF/F (control) mice were orally-exposed to a 1% dose of ME7

scrapie prions and tissues collected at intervals afterwards. At 105 d post infection (dpi) high levels of disease-specific PrP (PrPd, brown, middle rows)

were detected in association with FDC (CD21/35+ cells, brown, upper panels) in (A) the Peyer’s patches, (B) mesenteric lymph nodes (MLN), and (C)

spleens of RANKF/F control mice. Analysis of adjacent sections by PET immunoblot analysis confirmed the presence of prion-specific PK-resistant PrPSc

(blue/black). Arrows show PrPd/PrPSc accumulation upon FDC networks. In contrast, no PrPSc was detected in any of the Peyer’s patches, MLN and

spleens from orally-exposed RANKΔIEC mice at (A) 105 dpi or (B) 440 dpi. C) Similarly, no PrPSc was detected in any of the spinal cords or brains of orally-

exposed RANKΔIEC mice at 440 dpi. Sections were counterstained with haematoxylin to detect cell nuclei (blue). Images are representative of 8 orally-

exposed RANKΔIEC mice.

doi:10.1371/journal.ppat.1006075.g005
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Fig 6. RANKL treatment enhances the density of M cells in the follicle associated epithelium (FAE) of the

Peyer’s patches and the villous epithelium of the intestine. The density of functionally mature M cells in the

intestine can be promoted in mice through exogenous administration of RANKL. Here, C57BL/6 mice were treated

daily with RANKL (or PBS as a control) to induce M cell-differentiation. Peyer’s patches and intestines were

collected on d 3 of treatment, coincident with the peak period of induction of M-cell gene expression in the gut
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following oral exposure to a moderate (1%) dose of ME7 scrapie prions, all PBS and RANKL-

treated mice developed clinical disease. However, the RANKL-treated mice succumbed to clin-

ical disease approximately 17 d earlier with a shorter mean survival time when compared to

PBS-treated control mice (PBS-treated mice, mean 346±25 d, median 343 d, n = 7/7; RANKL-

treated mice, mean 329±18 d, median 322 d, n = 8/8; Fig 8A). When mice were orally exposed

to a limiting (0.1%) dose of prions only three of eight PBS-treated mice succumbed to clinical

disease with individual survival times of 371, 378 and 420 d (Fig 8A). The five remaining PBS-

treated mice did not develop clinical prion disease up to 525 dpi. In contrast, RANKL-treat-

ment significantly enhanced prion disease pathogenesis as seven of eight RANKL-treated mice

exposed to a limiting dose of prions succumbed to clinical disease with significantly shorter

survival times (Fig 8A; RANKL-treated mice, mean 352±22 d, median 350 d, n = 7/8;

P<0.0078, Log-rank [Mantel-Cox] test). Only one of the eight RANKL-treated mice exposed

to a limiting dose of prions was free of the clinical signs of prion disease up to at least 525 dpi.

The brains of all mice that developed clinical signs of prion disease in each treatment

group had the characteristic spongiform pathology (vacuolation), astrogliosis, microgliosis

and PrPSc accumulation typically associated with terminal infection with ME7 scrapie prions

(Fig 8B). The distribution and severity of the spongiform pathology was also similar in the

brains of all the clinically-affected mice (Fig 8C & 8D), indicating that RANKL treatment did

not alter the course of CNS prions disease after neuroinvasion had occurred. In contrast, no

histopathological signs of prion disease were detected in the brains of any of the clinically-

negative mice.

As expected, at the terminal stage of disease high levels of PrPSc were maintained upon

FDC in the Peyer’s patches, MLN and spleen of all clinically-affected mice. However, no evi-

dence of PrPSc accumulation within these lymphoid tissues was observed in any of the orally-

exposed clinically-negative mice (S3 Fig). These data show that all the clinically-negative mice

were free of prions in their lymphoid tissues and brains, and therefore highly unlikely to suc-

cumb clinical prion disease after substantially extended survival times, had the observation

period been extended beyond 525 dpi.

epithelium [22, 35]. A-F) Sections of Peyer’s patches and villous epithelium were stained for the M cell markers GP2

and SPIB. A) Representative distribution of GP2+ (green, mature M cells, upper-panels) and SPIB+ (green, within

the nuclei of differentiating and mature M cells, lower panels) M cells in the Peyer’s patches of mice from each group.

Broken lines indicate the boundary of the FAE. SED, subepithelial dome; V, villi. Morphometric analysis confirmed a

significant increase in the number of (B) GP2+ and (C) SPIB+ M cells in the Peyer’s patches of RANKL-treated mice

(GP2, P<0.0001; SPIB, P<0.001, Student’s t-test; 4–5 FAE/mouse, n = 4 mice/group). D) Morphometric analysis

also revealed a significant increase in the number of GP2+ M cells in the villous epithelium after RANKL-treatment

(P<0.0001, Mann-Whitney U test; 5–7 sections/mouse, n = 4 mice/group). E) Representative distribution of SPIB+

cells (green, arrows) in the villous epithelium of RANKL- and PBS-treated mice. Broken lines indicate the lumenal

surface of the gut epithelium. F) Morphometric analysis confirmed a significant increase in the number of SPIB+ cells

in the villous epithelium after RANKL-treatment (P<0.0001, Mann-Whitney U test; 3–16 sections/mouse, n = 4 mice/

group). G) C57BL/6 mice were treated daily with RANKL (or PBS as a control) to induce M cell-differentiation and on

d 2 orally-gavaged with 2x1011 fluorescent microbeads. Peyer’s patches and intestines were collected 24 h later to

compare the functional ability of M cells in the intestines of mice from each group to acquire and transcytose

particulate antigens. Fluorescent microbeads (green, arrows) were detected in sections of Peyer’s patches (left-

hand panels) and intestine (right panels) by fluorescence microscopy. V, villi; broken line, lumenal surface of the gut

epithelium. In the intestines of RANKL-treated mice the number of fluorescent microbeads in (H) the SED of the

Peyer’s patches (P<0.0001, Mann-Whitney U test; 27 Peyer’s patch sections/mouse, n = 4 mice/group) and (I) villi

(P<0.0001, Mann-Whitney U test; 24 intestine sections/mouse, n = 4 mice/group) was significantly increased. J)

Sections of Peyer’s patches and villi from PBS- and RANKL-treated mice were also immunostained to identify

LAMP1+ endosomes (red) in the epithelium. Broken lines indicate the boundary of the epithelium. K&L)

Morphometric analysis of the % area of LAMP1+ immunostaining in (K) the FAE (1–6 FAE per mouse, n = 4 mice/

group) and (L) villous epithelium (3–14 villi sections per mouse, n = 4 mice/group. DAPI (blue) was used to

counterstain nuclei throughout.

doi:10.1371/journal.ppat.1006075.g006
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Fig 7. Effect of RANKL-treatment on mononuclear phagocytes and innervation in Peyer’s patches and

the lamina propria of the intestine. C57BL/6 mice were treated daily with RANKL (or PBS as a control) to

induce M cell-differentiation and Peyer’s patches and intestines collected on d 3. A) Immunohistochemical

(IHC) comparison of the distribution of CD11c+ (green) and CD68+ (red) mononuclear phagocytes (indicative of

classical DC and tissue macrophages, respectively) in Peyer’s patches of RANKL- and PBS-treated mice.
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Our data suggested that RANKL-treatment significantly increased susceptibility to orally-

administered prions. Indeed, no significant difference in disease incidence or mean survival

time was observed in the RANKL-treated mice exposed to a 0.1% dose of prions when com-

pared to PBS-treated control mice given a 10X higher (1%) dose (PBS/1% vs. RANKL/0.1%,

P = 0.205; Log-rank [Mantel-Cox] test; Fig 8A). Together, these data demonstrate that

increased M cell-deficiency in the gut epithelium following RANKL-treatment significantly

enhances oral prion disease susceptibility by approximately 10-fold. Although certain concur-

rent pathogen infections or inflammatory stimuli may have multiple effects on the gut epithe-

lium, our data suggest that factors such as these that modify M cell-density in the intestine [25,

39, 40] may represent important risk factors which can significantly influence susceptibility to

orally-acquired prion infections.

Increased M cell-density enhances the early accumulation of prions in

lymphoid tissues

Prion replication within Peyer’s patches is essential for efficient neuroinvasion after oral expo-

sure [10–13]. We therefore determined whether the decreased survival times and increased

prion disease susceptibility in orally-exposed RANKL-treated mice were associated with the

earlier accumulation of prions in their lymphoid tissues. Mice were treated with RANKL (or

PBS as a control) and orally exposed to a 1% dose of ME7 scrapie prions as above, and culled

at intervals afterwards (n = 4/group). Abundant accumulations of PrPSc were clearly evident in

association with FDC in the Peyer’s patches, MLN and spleen of RANKL-treated mice by 70

dpi, and were undetectable in the majority of the tissues from the PBS-treated animals at this

time (Fig 9A & 9B). To compare prion infectivity levels between the treatment groups, spleen

homogenates were prepared and injected intracerebrally (i.c.) into groups of tga20 indicator

mice (n = 4/spleen homogenate). As the expression level of PrPC controls the prion disease

incubation period, tga20 mice which overexpress PrPC are extremely useful as indicator mice

in prion infectivity bioassays as they succumb to disease with much shorter survival times than

conventional mice [59]. Significantly high levels of prion infectivity were detected in three of

four of the spleens collected from the RANKL-treated mice at 70 dpi, whereas only one of four

spleens from the PBS treated spleen contained detectable levels of prion infectivity (P<0.0002,

Log-rank [Mantel-Cox] test; Fig 9C). By 105 dpi abundant accumulations of PrPSc were

detected at equivalent frequencies in the lymphoid tissues of the PBS- and RANKL-treated ani-

mals (Fig 9D).

These data show that an increased density of M cells in the intestinal epithelium at the time

of oral exposure enhanced the uptake of prions from the gut lumen, as the RANKL-treated

mice accumulated prions within their lymphoid tissues significantly earlier than control mice.

Sections were counterstained with DAPI (blue) to detect cell nuclei. Broken lines show the lumenal boundary of

the follicle associated epithelium (FAE). SED, subepithelial dome. Morphometric analysis suggested that the %

area of the SED occupied by CD11c+ (B) and CD68+ (C) immunostaining was similar in Peyer’s patches from

each group (CD11c, P = 0.579, Student’s t-test; CD68, P = 0.241, Mann-Whitney U test; 4–8 SED/mouse, n = 4

mice/group). D) IHC comparison of the distribution of CD11c+ (green) and CD68+ (red) mononuclear

phagocytes in the lamina propria (LP) of RANKF/F and RANKΔIEC mice. Sections were counterstained with

DAPI (blue). Morphometric analysis suggested that the % area of (E) CD11c+ immunostaining was similar in

the LP of mice from each group (P = 0.380, Student’s t-test), whereas the % area of (F) CD68+ immunostaining

was increased in the LP of RANKL-treated mice (P < 0.021. Mann-Whitney U test; data derived from 4 LP

areas/mouse, n = 4 mice/group). G) Sections of intestines from RANKL- and PBS-treated mice were

immunostained to identify synaptophysin 1 (red) to enable enteric innervation in the gut wall to be compared in

each treatment group. Sections were counterstained with DAPI (blue). H) Morphometric analysis suggested

that the % area of synaptophysin 1+ immunostaining within the LP was similar (P = 0.078, Student’s t-test; data

derived from 2–4 LP areas/mouse, n = 4 mice/group).

doi:10.1371/journal.ppat.1006075.g007

Increased M Cell-Density Exacerbates Oral Prion Disease Susceptibility

PLOS Pathogens | DOI:10.1371/journal.ppat.1006075 December 14, 2016 16 / 36



Fig 8. RANKL treatment significantly enhances susceptibility to oral prion disease. C57BL/6 mice were treated daily

for 4 d with RANKL (or PBS as a control) to induce M cell-differentiation, and orally-exposed to a moderate (1% scrapie

brain homogenate) or limiting (0.1%) dose of ME7 scrapie prions between the 3rd and 4th treatments. A) RANKL-treatment

significantly increased disease susceptibility following oral exposure to a limiting dose of prions. Clinical prion disease

survival curves for PBS- (solid lines) or RANKL-treated mice (broken lines) orally exposed to either a 1% (blue lines) or
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The effects of RANKL treatment on oral prion disease pathogenesis are

restricted to the intestinal epithelium

Although a rare occurrence in the steady-state, certain pathogenic microorganisms can stimu-

late the direct sampling of the gut lumenal contents by classical DC [60–63]. Whether this

direct sampling activity by classical DC also contributes to the efficient uptake of orally-admin-

istered prions in the steady-state is uncertain [8, 16, 49]. Since RANKL was administered sys-

temically in the current study, it is plausible that this treatment may have stimulated the direct

sampling of the lumenal contents by cells other than M cells such as classical DC. An addi-

tional experiment was performed to test this hypothesis. As shown above, RANKΔIEC mice are

unable to accumulate prions in their Peyer’s patches due to the specific lack of M cells (Fig 5).

Since RANK-deficiency in RANKΔIEC mice is restricted only to intestinal epithelial cells [23],

we reasoned that if the effects of RANKL-treatment on disease pathogenesis were independent

of their effects on M cells, then RANKL-treatment would also facilitate the uptake of prions

into the Peyer’s patches of RANKΔIEC mice. To address this issue, RANKΔIEC mice were treated

with RANKL and orally exposed to a 1% dose of ME7 scrapie prions as in the previous experi-

ment. At 105 dpi Peyer’s patches and MLN were collected and analysed for the presence of

PrPSc as before. As anticipated, abundant accumulations of PrPSc were detected in association

with FDC in the Peyer’s patches and MLN of orally-exposed C57BL/6 wild-type (WT) control

mice by 105 dpi. However, no PrPSc was detected in tissues from RANKL-treated RANKΔIEC

mice (S4 Fig). These data clearly show that RANKL-treatment was unable to restore prion

accumulation in the Peyer’s patches and MLN of RANKΔIEC mice, indicating that the major

effects of RANKL-treatment on oral prion disease pathogenesis were due to effects on M cell-

deficiency in the intestinal epithelium.

Increased M cell-density in the FAE of Peyer’s patches, not the villous

epithelium, is responsible for the increased oral prion disease

susceptibility in RANKL-treated mice

RANKL-treatment stimulates M cell-differentiation within the FAE of the Peyer’s patches and

also in the villous epithelium (Fig 6; [22, 35, 64]). We therefore considered it plausible that the

enhanced prion pathogenesis we observed in RANKL-treated mice was due to the increased

uptake of prions by the M cells induced in the villous epithelium. If RANKL-treatment had

stimulated the uptake of prions predominantly via villous M cells, we reasoned that this would

have facilitated the earlier transport of prions directly to the MLN [65]. An additional experi-

ment was designed to test this hypothesis.

Lymphotoxin-β-deficient (LTβ-/-) mice lack Peyer’s patches and most peripheral lymph

nodes, but retain MLN and the spleen [66]. These mice also lack FDC in their remaining

0.1% (red lines) dose of prions (PBS/1% vs. RANKL/1%, P = 0.120; PBS/0.1% vs. RANKL/0.1%, P<0.0078; PBS/1% vs.

RANKL/0.1%, P = 0.205; Log-rank [Mantel-Cox] test). B) High levels of spongiform pathology (H&E, upper row), heavy

accumulations of PrPd (brown, second row) and disease-specific PrPSc (PET immunoblot, black, third row), reactive

astrocytes expressing GFAP (brown, fourth row) and active microglia expressing Iba1 (brown, bottom row) were detected in

the brains of all orally-exposed mice with clinical prion disease. However, none of these histopathological signs of prion

disease were detected in the brains of any of the clinically-negative mice up to at least 525 d after oral exposure. Clin.,

clinical prion disease status; pos., clinically positive; neg., clinically negative; individual survival times are shown (dpi, days

post infection). Sections were counterstained with haematoxylin to detect cell nuclei (blue). C&D) The severity and

distribution of the spongiform pathology (vacuolation) within each brain was scored on a scale of 1–5 in nine grey matter

areas: G1, dorsal medulla; G2, cerebellar cortex; G3, superior colliculus; G4, hypothalamus; G5, thalamus; G6,

hippocampus; G7, septum; G8, retrosplenial and adjacent motor cortex; G9, cingulate and adjacent motor cortex; Each

point represents the mean vacuolation score ± SD.

doi:10.1371/journal.ppat.1006075.g008
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Fig 9. RANKL-treatment induces the earlier accumulation of prions in lymphoid tissues after oral

exposure. C57BL/6 mice were treated daily for 4 d with RANKL (or PBS as a control) to induce M cell-

differentiation, and orally-exposed to a moderate (1%) dose of ME7 scrapie prions between the 3rd and 4th

treatments. Peyer’s patches, mesenteric lymph nodes (MLN) and spleens were collected at 70 and 105 days

post infection (dpi). A) At 70 dpi, abundant accumulations of PrPSc (PET immunoblot, black, arrows) were
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lymphoid tissues, as constitutive LT-stimulation is essential for their maintenance [67], and

are refractory to oral prion infection [10, 11]. Peyer’s patches-deficient LTβ-/- mice were γ-irra-

diated and reconstituted with LTβ-expressing (WT) bone marrow (termed WT!LTβ-/- mice,

hereinafter) and tissues collected at 2.5 weekly intervals (n = 4 mice/group). Although the for-

mation of FDC networks within the MLN and spleens of WT!LTβ-/- mice is restored by 5 wk

after reconstitution (Fig 10A), WT!LTβ-/- mice remain refractory to oral prion disease [11]

as Peyer’s patches, not the MLN, are the essential early sites of prion accumulation and neu-

roinvasion after oral exposure [11, 13].

The reconstitution of LTβ-/- mice with WT bone marrow also induces the differentiation

and maturation of isolated lymphoid follicles (ILF) throughout the small intestine [11, 68, 69].

Mature ILF characteristically contain a single organized B cell-follicle, a network of FDC, and

an M cell-containing FAE at the lumenal surface [11, 13, 68]. Since we have shown that mature

small intestinal ILF are important sites of prion accumulation and neuroinvasion [11, 13], it

was necessary to ensure there were no ILF with M cell-containing FAE in the intestines of

WT!LTβ-/- mice at the time of RANKL-treatment and prion exposure. Whole-mount immu-

nostaining of three individual 2 cm sections of small intestine from each WT! LTβ-/- mouse

showed that ILF with developed FAE containing GP2+ M cells were not present until 12.5

post-reconstitution (Fig 10B & 10C). These data revealed a window of opportunity between

5–10 wk post-reconstitution during which the small intestines of WT!LTβ-/- mice lacked

FAE and M cell-containing GALT, but possessed FDC within their MLN. This FAE-deficient

model was therefore used to determine whether RANKL-treatment facilitated the direct deliv-

ery of prions from the gut lumen to the MLN.

At 7.5 wk post-reconstitution WT!LTβ-/- mice (n = 3-4/group) were treated with RANKL

(or PBS as a control) for 4 d and orally-exposed to prions as before, and prion infectivity levels

determined in their MLN 28 d later. Tissues were assayed for prion infectivity at this time after

oral exposure to determine whether RANKL-treatment of WT!LTβ-/- mice facilitated the ear-

lier replication of prions within the MLN. Consistent with our previous data showing that

Peyer’s patches in the small intestine, not the MLN, are the important early sites of prion accu-

mulation after oral exposure [11, 13], prion infectivity was undetectable in the MLN of the

PBS control-treated WT!LTβ-/- mice. Similarly, prion infectivity was also undetectable in the

MLN of the RANKL-treated WT!LTβ-/- mice. In each instance all the recipient tga20 indica-

tor mice (n = 4/MLN homogenate tested) were free of clinical disease up to 200 dpi (Fig 10D)

and had no histopathological signs of prion disease in their brains (spongiform pathology and

PrPd deposition; Fig 10E). These data clearly show that RANKL-treatment did not stimulate

the early transport of prions directly to the MLN. This suggests that the enhanced prion disease

pathogenesis observed in RANKL-treated mice was due to the increased uptake of prions from

the gut lumen by M cells in the FAE of the Peyer’s patches, rather than by villous M cells.

clearly evident in association with FDC (CD21/35+ cells, brown, arrows) in the Peyer’s patches, MLN and

spleens of many of the RANKL-treated mice, but were undetectable in the majority of the tissues from the PBS-

treated mice. Sections were counterstained with haematoxylin to detect cell nuclei (blue). B) At 70 dpi, the

frequency of FDC networks containing PrPSc was increased in the Peyer’s patches, MLN and spleens of the

RANKL-treated mice when compared to PBS-treated control mice (n = 4 mice/group). C) Prion infectivity levels

were assayed in spleens from RANKL-treated and PBS-treated control mice (n = 4 spleens/group) collected at

70 dpi. Prion infectivity titres (log10 ID50/g tissue) were determined by injection of tissue homogenates into

groups of tga20 indicator mice (n = 4 recipient mice/spleen). Each symbol represents data derived from an

individual spleen. Data below the horizontal line indicate disease incidence in the recipient mice <100% and

considered to contain trace levels of prion infectivity. D) At 105 dpi, no difference in the frequency of FDC

networks containing PrPSc was observed in the Peyer’s patches, MLN and spleens of mice from each

treatment group (n = 4 mice/group).

doi:10.1371/journal.ppat.1006075.g009
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Fig 10. Villous M cells induced by RANKL-treatment do not enhance the transport prions to the mesenteric lymph

nodes (MLN). This experiment aimed to determine whether the enhanced prion pathogenesis we observed in RANKL-

treated C57BL/6 mice wild-type (WT) mice was due to the increased uptake of prions by the M cells induced in the villous

epithelium. A mouse model was created in which their small intestines lacked follicle associated epithelia (FAE) and M cell-

containing gut-associated lymphoid tissues, but possessed follicular dendritic cells (FDC) in their MLN. A-C) Peyer’s
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Discussion

Here we show that the density of M cells in the gut epithelium directly influences oral prion

disease pathogenesis and susceptibility. In the specific absence of M cells, the accumulation of

prions in Peyer’s patches and subsequent neuroinvasion was blocked, demonstrating that

prion translocation across the gut epithelium in association with M cells is essential to establish

host infection. Our data also imply that an absence or reduction in M cell-abundance may sig-

nificantly reduce susceptibility to many naturally acquired prion diseases such as vCJD in

humans, CWD in cervids and natural sheep scrapie. For example, in the UK most clinical

vCJD cases have predominantly occurred in young adults (median age at death, ~28 years) [4],

but epidemiological data indicate that this age-related susceptibility is not simply due to the

exposure of young individuals to greater levels of the BSE agent through dietary preference

[70]. We have previously shown that the density of functionally mature M cells in the Peyer’s

patches of aged mice is substantially reduced [71], suggesting that the reduced susceptibility of

aged mice to oral prion infection [72] is at least in part due to the inefficient uptake of prions

from the gut lumen by M cells.

We also show that increased M-cell density at the time of oral exposure exacerbated prion

disease pathogenesis: the uptake of prions from the gut lumen was enhanced, and as a conse-

quence, survival times were decreased and disease susceptibility was increased approximately

10-fold. The density of M cells in the gut epithelium can be modified by the presence of certain

pathogenic bacteria or inflammatory stimuli [25, 39, 40]. Although these stimuli may have

multiple effects on the gut epithelium which can influence the integrity of this barrier, data in

the current study provide a significant advance in our understanding of how factors that

increase the density of M cells in the gut epithelium may increase susceptibility to orally-

acquired prion infection. For example, the enteroinvasive bacterium Salmonella Typhimurium

can specifically and rapidly transform enterocytes in the FAE of Peyer’s patches into M cells in

order to facilitate host infection [25]. Furthermore, an independent study has shown that con-

current infection with S. Typhimurium significantly increased oral prion disease susceptibility

[43]. Although this observation was originally attributed to the colitis induced by the pathogen

in the large intestine, data in the current study suggest a role for effects on M cells in the small

intestine cannot be excluded.

patches-deficient LTβ-/- mice were γ-irradiated and reconstituted with WT bone marrow (WT!LTβ-/- mice) and tissues from

3–4 mice examined at intervals afterwards. LTβ-/- mice and WT mice were included as controls. A) Immunohistochemical

analysis revealed that the development of FDC (CD35+ cells, red) in the B cell-follicles (B220+ cells, green) of MLN (upper

panels) and spleens of WT!LTβ-/- mice was restored by 5 wk after bone-marrow reconstitution. Images are representative

of 3–4 mice/group. B) Beginning at 5 wk post-reconstitution, and at 2.5 wk intervals thereafter, 3 individual 2 cm pieces of

intestine/mouse were whole-mount immunostained to detect M cells (GP2+ cells, green) and goblet cells (UEA-1+ cells, red).

F-actin (blue) was used as a counterstain. Characteristic epithelial structures that contained GP2+ M cells and resembled

the FAE covering isolated lymphoid follicles were absent in the intestines of LTβ-/- mice (left-hand panels) but were

detectable from 12.5 wk post-reconstitution in WT!LTβ-/- mice. FAE highlighted by broken lines in WT!LTβ-/- panels. The

broken line in the upper right-hand WT panel highlights 6 individual FAE covering a Peyer’s patch. Images are

representative of 3–4 mice/group. C) The total no. FAE across the 3 individual 2 cm intestinal pieces were counted (n = 3–4

mice/group). D) WT!LTβ-/- mice were prepared as above and at 7.5 wk post reconstitution (when FDC present but FAE

absent) were treated with RANKL for 4 d (or PBS as a control) to induce the differentiation of villous M cells in the intestine.

Between the 3rd and 4th treatments, the mice were subsequently orally-exposed to a 1% dose of ME7 scrapie prions, and

MLN were collected 28 d later (n = 3–4 MLN/group). Prion infectivity titres (log10 ID50/g tissue) were determined by injection

of MLN tissue homogenates into groups of 4 tga20 indicator mice. Each symbol represents data derived from an individual

MLN. Data below the horizontal line indicate disease incidence in the recipient mice <100% and considered to contain trace

levels of prion infectivity. E) Confirmation that none of the brains from the clinically-negative tga20 indicator mice injected

with MLN from PBS- or RANKL-treated donors contained histopathological signs of prion disease at the end of the

experiment (200 d post-injection): spongiform pathology (H&E, upper panels), or PrPd deposition (lower panels). Sections

were counterstained with haematoxylin to detect cell nuclei (blue). Images are representative of 12–16 mice/group.

doi:10.1371/journal.ppat.1006075.g010
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During the BSE epidemic in the UK it is estimated that approximately 500,000 infected cat-

tle were slaughtered for human consumption [73]. Despite the widespread dietary exposure of

the UK human population to BSE prions, clinical cases of vCJD have fortunately been rare

(Ref. [4]; 178 definite or probable cases, as of 5th December 2016; www.cjd.ed.ac.uk/

documents/figs.pdf). This implies that the ability to acquire prions from the gut lumen may

differ between individuals. Studies using transgenic mice expressing human PrPC suggest that

the transmission of BSE to humans is restricted by a significant species barrier [74]. After inter-

species prion exposure, the processing and amplification of prions upon FDC in lymphoid tis-

sues is important for their adaptation to the new host and to achieve neuroinvasion [75, 76].

Thus, it is plausible that factors which increase the density of M cells in the small intestine may

enable a greater burden of prions to enter Peyer’s patches, increasing the probability that more

will be able to avoid clearance by cells such as macrophages, [11, 77]. This may provide a

greater opportunity for prion quasi-species present within the original inoculum with zoonotic

potential to be selected and undergo adaptation and amplification upon FDC [78]. These

effects may help to reduce the transmission barrier to some orally acquired prion strains.

Enterocytes within the FAE overlying the Peyer’s patches specifically contain large

LAMP1+ endosomes [16]. A detailed high resolution IHC-based study has shown that within

the first day following oral exposure of mice to prions, PrPSc was detected within these large

LAMP1+ endosomes of FAE enterocytes, and to a lesser extent in M cells [16]. These FAE

enterocyte-associated endosomes have been proposed as a potential M cell-independent route

through which lumenal proteins and prions may also be taken up into Peyer’s patches [16]. In

the current study the presence and abundance of the large LAMP1+ endosomes within FAE

enterocytes was unaffected in M cell-deficient RANKΔIEC mice. These data clearly show that

the specific lack of M cells in the FAE, rather than an absence of the large LAMP1+ endosomes

within FAE enterocytes, was responsible for the blocked prion accumulation in Peyer’s

patches. Furthermore, the accumulation of prions in the Peyer’s patches, MLN and spleens of

orally-exposed M cell-deficient RANKΔIEC mice was undetectable up to at least 440 d after

exposure. As abundant prion accumulation is typically evident in these tissues in conventional

(WT) mice by 105 d after exposure, this implies that in the absence of M cells, any prions that

do enter the Peyer’s patches via alternative routes may be of insufficient magnitude to establish

infection. Indeed PrPSc was also undetectable in the lymphoid tissues and CNS of these mice

up to at least 440 dpi. Instead the prions that are acquired from the gut lumen by these M cell-

independent routes are most likely sequestered and destroyed by cells such as macrophages,

which are considered to degrade prions [77], rather than being efficiently transported to FDC

where they undergo amplification before neuroinvasion [7, 10, 13, 15]. RANKΔIEC mice show

reduced IgA production and delayed germinal centre responses in their Peyer’s patches [23].

This suggests that antigens that are transcytosed by M cells are preferentially targeted to the

FDC-containing B-cell follicles to initiate antibody responses. Therefore, M cells, in contrast

to FAE enterocytes with large LAMP1+ endosomes, may be considered to facilitate the efficient

transfer of prions from the gut lumen to FDC in the B-cell follicles of Peyer’s patches.

A separate IHC-based study also has proposed that the uptake of scrapie-affected brain

homogenate across the jejunal epithelium of lambs occurs independently of M cells [34]. How-

ever, if prions do efficiently establish infection within Peyer’s patches after their translocation

across the gut epithelium by enterocytes, one would not expect the specific absence of M cells

in RANKΔIEC mice to block oral prion disease susceptibility. In the above in vivo study [34],

large quantities of scrapie-affected brain homogenate were injected directly into the lumen of

ligated loops of jejunum. The presence of a large bolus of prions concentrated within the

lumen of these ligated loops may have facilitated prion uptake into alternative cellular com-

partments to those utilized following exposure to physiologically relevant doses via the oral

Increased M Cell-Density Exacerbates Oral Prion Disease Susceptibility

PLOS Pathogens | DOI:10.1371/journal.ppat.1006075 December 14, 2016 23 / 36

http://www.cjd.ed.ac.uk/documents/figs.pdf
http://www.cjd.ed.ac.uk/documents/figs.pdf


cavity. Although evidence of prions (PrPd) was detected in the underlying LP of these lambs, it

was interesting to note that no intraepithelial PrPd accumulations were detected by IHC [34].

Whether the prions were transiently present in enterocytes and/or M cells soon after exposure,

but at levels below the reliable detection limit or in a conformation which could not be

detected by the IHC protocols used, remains to be determined. By comparison, in the study by

Kujala and colleagues discussed above [16], PrPSc was detected within the FAE during the first

day after oral exposure using highly sensitive cryo-immunogold electron microscopy. M cells

unlike the neighbouring enterocytes have a very narrow cytoplasm due to the presence of the

MNP-containing basolateral pocket [20]. Thus it is also plausible that the prion transit time

through M cells may be extremely rapid, restricting the ability of IHC to reliably detect low lev-

els of prions or other particles which are being transcytosed through them. Surgical manipula-

tion and manual compression of the intestine can temporarily inhibit intestinal motility and

induce intestinal inflammation with activation of resident macrophages, as occurs during post-

operative ileus [79, 80]. These factors may have a significant influence on the uptake of prions

from the lumen of surgically-ligated intestinal loops.

Using extremely sensitive PrPSc-based detection assays, two independent studies reported

the presence of low/trace levels of prions in the blood-stream within minutes of oral exposure

[81, 82]. The cellular route through which the prions initially gained access to the blood-stream

was not determined in these studies. Urayama and colleagues [82] suggested that the levels of

PrPSc that initially contaminated the blood-stream after oral exposure were sufficient to initiate

infection in the brain. However, data from several studies show that prion replication upon

FDC in Peyer’s patches in the small intestine is essential to establish host infection after oral

exposure [7, 8, 10–13]. Furthermore, in the temporary absence of FDC at the time of oral expo-

sure, prion disease susceptibility is blocked [6]. Thus although PrPSc may be detected in the

blood-stream soon after oral exposure using highly sensitive assays [81, 82], data elsewhere

indicate that the levels of prions that are initially within it are unable to directly establish host

infection and achieve neuroinvasion.

After uptake by M cells, CD11c+ classical DC are considered to deliver prions towards

FDC, as their transient depletion reduces susceptibly to oral prion disease [8]. A partial reduc-

tion in CD11c+ immunostaining was observed in the SED of Peyer’s patches from RANKΔIEC

mice, implying a partial reduction in the abundance of these cells. M cells specifically express

the chemokine CCL9 [22] which mediates the attraction of certain classical DC populations

towards the FAE [83]. Thus, the reduced CD11c+ immunostaining in the SED of RANKΔIEC

mice may be a consequence of the absence of attraction of CD11c+ cells towards the basolateral

pockets of M cells. This partial reduction in CD11c+ immunostaining in SED region alone

could not account for the complete block of prion accumulation observed in RANKΔIEC mice,

as our previous data show that the depletion of CD11c+ cells (>85%) prior to oral exposure

does not block neuroinvasion [8]. Although the germinal centre response is delayed in RAN-

KΔIEC mice [23], our data suggested that FDC status was unaffected in these mice. Further-

more, the FDC in the Peyer’s patches, MLN and spleen of these mice were capable of

accumulating high levels of PrPSc after injection of prions by the i.p. route. We have also previ-

ously shown that an absence of germinal centres themselves does not influence peripheral

prion disease pathogenesis [84].

The GALT in the small intestine such as the Peyer’s patches, not those in the large intestine,

are the major early sites of prion uptake, replication and neuroinvasion after oral exposure [11,

13, 16]. RANKL-RANK signalling is also necessary for the induction of M cell-differentiation

within the large intestine, but in contrast to its role in the small intestine, it does not induce

their maturation. As a consequence, GP2-expressing functionally mature M cells are scarce in

the FAE overlying the large intestinal GALT [64]. Consistent with this, systemic RANKL-
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treatment also does not increase the abundance of functionally mature M cells in the FAE

overlying the caecal patches or in the conventional epithelium of large intestine [64]. These

data suggest that the effects of systemic RANKL-treatment on oral prion disease pathogenesis

observed in the current study were due to an increased abundance of mature M cells specifi-

cally in the small intestine.

In the steady state, functionally mature M cells are confined to the FAE overlying the

Peyer’s patches and are extremely rare within the villous epithelium. However, systemic

RANKL-treatment, as used here, significantly increases the abundance of mature M cells in

the FAE overlying Peyer’s patches and throughout the villous epithelium [22, 35, 64]. There-

fore, it is plausible that the effects of systemic RANKL-treatment on oral prion disease patho-

genesis were in part due to the enhanced uptake of prions by villous M cells, facilitating their

more efficient delivery to the MLN. Using LTβ-/- mice reconstituted with WT bone marrow

(WT!LTβ-/- mice), we generated mice that lacked Peyer’s patches or other M cell-containing

GALT structures (ILF) in their small intestines, but retained MLN which contained mature

FDC. If the major effect of RANKL-treatment on oral prion pathogenesis was due to uptake by

villous M cells and enhanced delivery from the LP to the MLN, the accumulation of prions in

the MLN would likewise be enhanced in these mice after RANKL-treatment. However, our

data clearly show that RANKL-treatment did not enhance the accumulation of prions within

the MLN of WT!LTβ-/- mice. This demonstrates that the major effect of RANKL-treatment

on oral prion disease pathogenesis and susceptibility was due to the increased uptake of prions

across the FAE overlying the Peyer’s patches in the small intestine. The absence of detectable

levels of prion infectivity in the MLN at the time of analysis suggests that any low levels of pri-

ons that do reach this tissue immediately after oral exposure are either not delivered to FDC in

the MLN as efficiently as they are in the Peyer’s patches, or are of insufficient magnitude to

establish infection on FDC and are thus most likely degraded by macrophages [11, 77]. Our

IHC analysis implied that the abundance of CD68+ macrophages was increased in the LP after

RANKL-treatment, suggesting that it is also plausible that any prions that had been acquired

by villous M cells were subsequently sequestered and destroyed in the LP by macrophages.

Classical DC in the LP of the intestine are considered to deliver lumenal antigens directly to

MLN [65]. Here, RANKL-treatment of RANKΔIEC mice did not restore prion accumulation in

their Peyer’s patches and MLN following oral exposure, demonstrating that RANKL-treatment

did not alter the uptake of prions from the gut lumen by non-epithelial cells, such as classical

DC. Our data suggest that direct sampling of the lumenal contents by classical DC in the LP

[60–63] is also unlikely to contribute significantly to prion uptake from the gut lumen, as this

too would result in the direct delivery of prions to the MLN [65].

In conclusion, we show that the initial uptake and transfer of prions across the gut epithe-

lium in association with M cells is essential to establish host infection. Importantly, we also

demonstrate that the density of M cells in the FAE overlying the Peyer’s patches in the small

intestine directly controls the efficiency of oral prion infection. In the specific absence of M

cells, the uptake and accumulation of prions in Peyer’s patches and their subsequent spread to

the MLN and spleen is blocked. In contrast, oral prion disease susceptibility was enhanced

approximately 10-fold in mice in which M cell-deficiency in the gut epithelium was increased.

Thus, M cells could be considered as the gatekeepers of oral prion infection whose density

directly limits or enhances disease susceptibility. Further studies are necessary to determine

whether most orally acquired prion strains similarly exploit intestinal M cells to establish host

infection after oral exposure, but data from independent in vivo and in vitro studies using

mouse-passaged RML scrapie prions [30], Fukuoka-1 prions [31], BSE prions [32] and 263K

hamster prions [17] imply a similar requirement. Antigen sampling M cells are also present in

the FAE overlying the NALT in the nasal cavity [44, 45], but data from the analysis of prion
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disease pathogenesis in hamsters implies that the requirement for M cell-mediated uptake may

vary depending on the route of exposure [85]. After intra-nasal exposure some transient

uptake of 263K prions was observed in M cells within the FAE overlying the NALT, but a

greater magnitude of paracellular transport across the epithelia within the nasal cavity was also

noted [85]. Although certain concurrent pathogen infections, inflammatory stimuli and aging

may have multiple effects on the gut epithelium, our data suggest that factors such as these that

can modify M cell-density in the small intestine [25, 39, 40, 71] may represent important risk

factors which can significantly influence susceptibility to orally-acquired prion infections. Our

data also raise the possibility that the density of M cells in the gut epithelium may similarly

influence susceptibility to other important orally-acquired bacterial and viral pathogens which

are considered to exploit M cells to infect the host [24–28].

Materials and Methods

Ethics statement

All studies using experimental mice and regulatory licences were approved by both The Roslin

Institute’s and University of Edinburgh’s ethics committees. All animal experiments were car-

ried out under the authority of a UK Home Office Project Licence (PPL60/4325) within the

terms and conditions of the strict regulations of the UK Home Office ‘Animals (scientific pro-

cedures) Act 1986’. Where necessary, anaesthesia appropriate for the procedure was adminis-

tered, and all efforts were made to minimize harm and suffering. Mice were humanely culled

by a UK Home Office Schedule One method.

Mice

The following mouse strains were used in this study where indicated: C57BL/6J; Villin-cre (Tg

(Vil-cre)997Gum/J strain; The Jackson Laboratory, Bar Harbor, ME); RANKfl/fl, which have

loxP sites flanking exons 2 and 3 of Tnfrsf11a (which encodes RANK) [23]; LTβ-/- [86]; tga20,

which overexpress PrPC [59]. All mice were bred and maintained on a C57BL/6J background

and housed under SPF conditions.

γ-Irradiation and bone-marrow reconstitution

Bone-marrow from the femurs and tibias of donor mice was prepared as single-cell suspen-

sions (3x107–4x107 viable cells/ml) in HBSS (Life Technologies, Paisley, UK). Recipient adult

LTβ-/- mice (6–8 weeks old) were γ-irradiated (10 Gy) and 24 h later reconstituted with 100 μl

bone-marrow by injection into the tail vein.

Recombinant mouse RANKL

Glutathione S-transferase—RANKL fusion protein was prepared as described [35]. To

enhance M-cell-density in the gut epithelium mice were treated with RANKL in vivo as previ-

ously described [22, 35]: d 0 injected with RANKL by a combination of i.p. and subcutaneous

injection (50 μg/ea.); d 1, 50 μg RANKL by subcutaneous injection; d 2, 50 μg RANKL by sub-

cutaneous injection; d 3, 50 μg RANKL by subcutaneous injection. Mice were orally exposed

to prions or gavaged with fluorescent microbeads on d 2 after the onset of RANKL treatment.

Prion exposure and disease monitoring

For oral exposure, mice were fed individual food pellets doused with 50 μl of a 1% (containing

approximately 2.5 X 104 i.c. ID50 units) or 0.1% (w/v) dilution of scrapie brain homogenate

prepared from mice terminally-affected with ME7 scrapie prions according to our standard
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protocol [7–9, 11, 13, 72]. During the dosing period mice were individually housed in bedding-

and food-free cages. Water was provided ad libitum. A single prion-dosed food pellet was then

placed in the cage. The mice were returned to their original cages (with bedding and food ad
libitum) as soon as the food pellet was observed to have been completely ingested. The use of

bedding- and additional food-free cages ensured easy monitoring of consumption of the

prion-contaminated food pellet. For i.p. exposure, mice were injected with 20 μl of a 1% dilu-

tion of scrapie brain homogenate. Following prion exposure, mice were coded and assessed

weekly for signs of clinical disease and culled at a standard clinical endpoint. The clinical end-

point of disease was determined by rating the severity of clinical signs of prion disease exhib-

ited by the mice. Following clinical assessment, mice were scored as “unaffected”, “possibly

affected” and “definitely affected” using standard criteria which typically present in mice clini-

cally-affected with ME7 scrapie prions. Clinical signs following infection with the ME7 scrapie

agent may include: weight-loss, starry coat, hunched, jumpy behaviour (at early onset) pro-

gressing to limited movement, upright tail, wet genitals, decreased awareness, discharge from

eyes/blinking eyes, ataxia of hind legs. The clinical endpoint of disease was defined in one of

the following ways: i) the day on which a mouse received a second consecutive “definite” rat-

ing; ii) the day on which a mouse received a third “definite” rating within four consecutive

weeks; iii) the day on which a mouse was culled in extremis. Survival times were recorded for

mice that did not develop clinical signs of disease or were culled when they showed signs of

intercurrent disease. Prion diagnosis was confirmed by histopathological assessment of vacuo-

lation in the brain. For the construction of lesion profiles, vacuolar changes were scored in

nine distinct grey-matter regions of the brain as described [87].

For bioassay of prion infectivity individual MLN or spleen were prepared as 1% (wt/vol)

homogenates in physiological saline. For each tissue homogenate groups of tga20 indicator

mice (n = 4/homogenate) were injected i.c. with 20 μl of each homogenate. The prion infectiv-

ity titre in each sample was determined from the mean incubation period in the indicator

mice, by reference to a dose/incubation period response curve for ME7 scrapie-infected spleen

tissue serially titrated in tga20 mice using the relationship: y = 9.4533–0.0595x (where y is log

ID50 U/20 μl of homogenate, and x is the incubation period; R2 = 0.9562).

IHC and immunofluorescent analyses

Whole-mount immunostaining was performed as previously described [9]. Peyer’s patches,

NALT and pieces of small intestines were fixed with BD Cytofix/Cytoperm (BD Biosciences,

Oxford, UK), and subsequently immunostained with rat anti-mouse GP2 mAb (MBL Interna-

tional, Woburn, MA; 5 μg/ml). Following addition of primary Ab, tissues were stained with

Alexa Fluor 488-conjugated anti-rat IgG Ab (Life Technologies), rhodamine-conjugated Ulex
europaeus agglutinin I (UEA-1; Vector Laboratories Inc., Burlingame, CA; 20 μg/ml) and

Alexa Fluor 647-conjugated phalloidin to detect f-actin (Life Technologies; 4 U/ml).

Intestines, MLNs and spleens were also removed and snap-frozen at the temperature of liq-

uid nitrogen. Serial frozen sections (6 μm in thickness) were cut on a cryostat and immunos-

tained with the following antibodies: FDC were visualized by staining with mAb 7G6 to detect

CR2/CR1 (CD21/35; BD Biosciences; 1 μg/ml) or mAb 8C12 to detect CR1 (CD35; BD Biosci-

ences; 1.25 μg/ml); cellular PrPC was detected using PrP-specific polyclonal antibody (pAb)

1B3 [88] (1/1000 dilution); B cells were detected using rat anti-mouse B220 mAb (clone RA3-

6B2, Life Technologies; 5 μg/ml); MNP were detected using hamster anti-mouse CD11c mAb

(clone N418, Bio-Rad, Kidlington, UK; 5 μg/ml) or rat anti-mouse CD68 mAb (clone FA-11,

Biolegend, Cambridge, UK; 5 μg/ml); rat anti-mouse CD107a (clone 1D4B; Biolegend;

2.5 μg/ml) to detect LAMP1; nerve synapses were detected using rabbit anti-synaptophysin 1
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(Synaptic Systems, Göttingen, Germany; 1/150 dilution). For the detection of SPIB in parafor-

maldehyde-fixed sections, antigen retrieval was performed with citrate buffer (pH 7.0, 121˚C,

5 min.) prior to immunostaining with sheep anti-mouse SPIB polyclonal antibody (R&D Sys-

tems, Abingdon, UK; 0.4 μg/ml). Appropriate species and immunoglobulin isotype control Ab

were used as controls (S5 Fig). Where appropriate, sections were counter-stained with DAPI

(2.86 μM) to detect cell nuclei (Life Technologies).

For the detection of disease-specific PrP (PrPd) in intestines, MLN, spleens and brains, tis-

sues were fixed in periodate-lysine-paraformaldehyde fixative and embedded in paraffin wax.

Sections (thickness, 6 μm) were deparaffinised, and pre-treated to enhance the detection of

PrPd by hydrated autoclaving (15 min, 121˚C, hydration) and subsequent immersion formic

acid (98%) for 10 min. Sections were then immunostained with 1B3 PrP-specific pAb (1/1000

dilution). For the detection of astrocytes, brain sections were immunostained with anti-glial

fibrillary acidic protein (GFAP; DAKO, Ely, UK; 1/400 dilution). For the detection of micro-

glia, deparaffinised brain sections were first pre-treated with citrate buffer and subsequently

immunostained with anti-ionized calcium-binding adaptor molecule 1 (Iba1; Wako Chemicals

GmbH, Neuss, Germany; 0.5 μg/ml). For the detection of FDC in intestines, MLN and spleens,

deparaffinised sections were first pre-treated with Target Retrieval Solution (DAKO) and sub-

sequently immunostained with anti-CD21/35 mAb. PET immunoblot analysis was used to

confirm the PrPd detected by immunohistochemistry was proteinase K-resistant PrPSc [57].

Membranes were subsequently immunostained with 1B3 PrP-specific pAb (1/4000 dilution).

For light microscopy, following the addition of primary antibodies, biotin-conjugated spe-

cies-specific secondary antibodies (Stratech, Soham, UK) were applied and immunolabelling

was revealed using HRP-conjugated to the avidin-biotin complex (ABC kit, Vector Laborato-

ries) and visualized with DAB (Sigma, Dorset, UK). Sections were counterstained with haema-

toxylin to distinguish cell nuclei. For fluorescent microscopy, following the addition of

primary antibody, streptavidin-conjugated or species-specific secondary antibodies coupled to

Alexa Fluor 488 (green), Alexa Fluor 594 (red) or Alexa Fluor 647 (blue) dyes (Life Technolo-

gies) were used. Sections were counterstained with either DAPI or Alexa Fluor 647-conjugated

phalloidin and subsequently mounted in fluorescent mounting medium (DAKO). Images of

whole-mount immunostained tissues and cryosections were obtained using a Zeiss LSM710

confocal microscope (Zeiss, Welwyn Garden City, UK).

Image analysis

For morphometric analysis, images were analysed using ImageJ software (http://rsb.info.nih.

gov/ij/) as described on coded sections [89]. Background intensity thresholds were first applied

using an ImageJ macro which measures pixel intensity across all immunostained and non-

stained areas of the images. The obtained pixel intensity threshold value was then applied in all

subsequent analyses. Next, the number of pixels of each colour (black, red, green, yellow etc.)

were automatically counted. For these analyses, data are presented as the proportion of posi-

tively-stained pixels for a given IHC marker per total number of pixels (all colours) in the spe-

cific area of interest (eg: SED, FAE, LP etc.). In each instance, typically 3–6 images were

analysed per mouse, from tissues from multiple mice per group (n = 4–8 mice/group). Full

details of all the sample sizes for each parameter analysed are provided in every figure legend.

Oral gavage with fluorescent microbeads

Mice were given a single oral gavage of 2x1011 of Fluoresbrite Yellow Green labelled 200 nm

microbeads (Polysciences, Eppelheim, Germany) in 200 μl PBS. Mice were culled 24 h later

and Peyer’s patches and small intestine segments were snap-frozen at the temperature of liquid
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nitrogen. Serial frozen sections (6 μm in thickness) were cut on a cryostat and counterstained

with DAPI. Images of SED from three Peyer’s Patches (duodenal, jejunal and ileal) and 8 LP

areas per mouse (n = 3–4 mice/group) from 3 non-sequential sections (total 21–31 SED, or 24

LP areas per mouse studied) were typically acquired using a Nikon Eclipse E400 fluorescent

microscope using Micro Manager (http://www.micro-manager.org). For example, each Peyer’s

patch was trimmed until at least one SED region was visible and 20 sections collected. The 1st,

10th and 20th sections were then analysed. Tissue auto-fluorescence was subtracted from dis-

played images using ImageJ, the size of the area of interest in each section was then measured

and the number of beads determined using the cell counter function in ImageJ and the bead

density calculated.

In vitro enteroid cultivation

Intestinal crypts were dissociated from mouse small intestine using Gentle Cell Dissociation

Reagent (Stemcell Tech, Cambridge, UK) and used establish enteroids by cultivation in Matri-

gel (BD Bioscience) and Intesticult medium (Stemcell Tech) as described [23, 90]. Where indi-

cated, some wells were treated with RANKL (100 ng/ml). Enteroids were cultivated in

triplicate and either passaged after 5 d of cultivation [90] or harvested for mRNA expression

analysis as described [23].

Real-time quantitative PCR (RT-qPCR) analysis of mRNA expression

Total RNA was isolated from the enteroid cultures using RNA-Bee (AMS Biotechnology,

Oxfordshire, UK) followed by treatment with DNase I (Ambion, Warrington, UK). First

strand cDNA synthesis was performed using 1 μg of total RNA and the First Strand cDNA

Synthesis kit (GE Healthcare, Bucks, UK) as described by the manufacturer. PCR was per-

formed using the Platinum-SYBR Green qPCR SuperMix-UDG kit (Life Technologies) and

the Stratagene Mx3000P real-time qPCR system (Stratagene, CA, USA). The qPCR primers

(S1 Table) were designed using Primer3 software [91]. The cycle threshold values were deter-

mined using MxPro software (Stratagene) and normalized relative to Gapdh.

Statistical analyses

All data are presented as mean ± SD. Unless indicated otherwise, differences between groups

were analysed by a Student’s t-test. In instances where there was evidence of non-normality

(identified by the Kolmogorov-Smirnov, D’Agostino & Pearson omnibus, or Shapiro-Wilk

normality tests), data were analysed by a Mann-Whitney U test. Survival rates were analysed

using the Log-rank (Mantel-Cox) test. Values of P<0.05 were accepted as significant.

Supporting Information

S1 Table. Primers used for RT-qPCR analysis.

(DOCX)

S1 Fig. RANKL-treatment induces the expression of M cell-related genes in in vitro culti-

vated enteroids. Enteroids were prepared from the small intestines of RANKF/F and RAN-

KΔIEC mice. Following passage the enteroids were treated with either RANKL (100 ng) or PBS

as a control. The expression of (A) M cell, (B) Paneth cell, and (C) intestinal stem cell-related

genes was compared 7 d after treatment (n = 3 enteroid cultures/group). Gene expression was

determined by RT-qPCR and normalized to the expression level of Gapdh (mean ± SD).

(TIF)
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S2 Fig. Effect of RANKL-treatment follicular dendritic cell (FDC) status. Immunohisto-

chemical (IHC) and morphometric analyses were used to determine whether RANKL-treat-

ment influenced the status of follicular dendritic cells (FDC) in Peyer’s patches and mesenteric

lymph nodes (MLN). C57BL/6 mice were treated daily with RANKL (or PBS as a control) to

induce M cell-differentiation, and Peyer’s patches, intestines and MLN collected on d 3. A)

IHC comparison of CD21/35 (red) and PrPC (blue) expression by FDC in the B cell-follicles

(B220+ cells, green) of Peyer’s patches from RANKL- and PBS-treated mice. B) Morphometric

analysis suggested that the area of the CD21/35+ immunostaining in the Peyer’s patches of

mice from each treatment group was similar (P = 0.104, Student’s t-test; data derived from 3–4

follicles/mouse, n = 4 mice/group). C) Morphometric analysis suggested that the % area of

PrPC immunostaining within the CD21/35+ FDC networks was also similar in Peyer’s patches

of mice from each treatment group (P = 0.485, Mann-Whitney U test; data derived from 2–8

follicles/mouse, n = 3 mice/group). D) Sections of MLN from RANKL- and PBS-treated mice

were immunostained to detect B cells (B220, green), FDC (CD21/35+ cells, red) and PrPC

(blue). E) Morphometric analysis similarly suggested that the % area of PrPC immunostaining

within the FDC networks was equivalent in the MLN from RANKL- and PBS-treated mice

(P = 0.065, Mann-Whitney U test; data derived from 2–6 follicles/mouse, n = 4 mice/group).

(TIF)

S3 Fig. Prion accumulation in the lymphoid tissues of PBS- and RANKL-treated mice at

the terminal stage of disease. C57BL/6 mice were treated daily for 4 d with RANKL (or PBS

as a control) to induce M cell-differentiation, and orally-exposed to a limiting (0.1%) dose of

ME7 scrapie prions between the 3rd and 4th treatments. Peyer’s patches, mesenteric lymph

nodes (MLN) and spleen were collected from all clinically-affected mice and those which were

free of the clinical signs of prion disease at the end of the experiment at 525 days post infection

(dpi). Clin., clinical prion disease status; pos., clinically positive; neg. clinically negative; indi-

vidual survival times are shown. High levels of PrPSc (PET immunoblot, black, arrows) were

detected in association with follicular dendritic cells (CD21/35+ cells, brown, arrows) in the

Peyer’s patches, MLN and spleens from all clinically-affected mice. In contrast, no PrPSc was

detected in tissues from any of the clinically-negative survivors at 525 dpi. Sections were coun-

terstained with haematoxylin to detect cell nuclei (blue). 0.1%-PBS Clin. pos, n = 3 mice; 0.1%-

PBS Clin. neg, n = 5 mice; 0.1%-RANKL Clin. pos, n = 7 mice; 0.1%-RANKL Clin. neg, n = 1

mouse.

(TIF)

S4 Fig. RANKL-treatment does not facilitate prion accumulation in the Peyer’s patches

and mesenteric lymph nodes (MLN) of RANKΔIEC mice orally exposed to prions. RAN-

KΔIEC mice were treated daily for 4 d with RANKL and orally-exposed to a 1% dose of ME7

scrapie prions between the 3rd and 4th treatments. Wild-type (WT) mice orally-exposed to pri-

ons alone were included as a control. At 105 days post-infection, heavy accumulations of PrPSc

(PET immunoblot, black, arrows) in association with FDC (CD21/35+ cells, brown, arrows)

were clearly evident in the Peyer’s patches and MLN of WT mice (left-hand panels). In con-

trast, no PrPSc accumulation was observed in tissues from the RANKL-treated RANKΔIEC

mice orally exposed to prions (right-hand panels). Sections were counterstained with haema-

toxylin to detect cell nuclei (blue). Images are representative of tissues from 4 mice/group.

(TIF)

S5 Fig. Primary antibody controls. Images of Peyer’s patches showing typical examples of the

immunostaining obtained with the primary Ab used in this study (first and third columns)

and their corresponding negative controls (second and fourth columns). Sections were
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counterstained with DAPI (blue) to detect cell nuclei. The antibody concentrations or dilu-

tions used are indicated. All scale bars = 50 μm.

(TIF)
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