15 research outputs found

    Study protocol: MyoFit46-the cardiac sub-study of the MRC National Survey of Health and Development

    Get PDF
    BACKGROUND: The life course accumulation of overt and subclinical myocardial dysfunction contributes to older age mortality, frailty, disability and loss of independence. The Medical Research Council National Survey of Health and Development (NSHD) is the world's longest running continued surveillance birth cohort providing a unique opportunity to understand life course determinants of myocardial dysfunction as part of MyoFit46-the cardiac sub-study of the NSHD. METHODS: We aim to recruit 550 NSHD participants of approximately 75 years+ to undertake high-density surface electrocardiographic imaging (ECGI) and stress perfusion cardiovascular magnetic resonance (CMR). Through comprehensive myocardial tissue characterization and 4-dimensional flow we hope to better understand the burden of clinical and subclinical cardiovascular disease. Supercomputers will be used to combine the multi-scale ECGI and CMR datasets per participant. Rarely available, prospectively collected whole-of-life data on exposures, traditional risk factors and multimorbidity will be studied to identify risk trajectories, critical change periods, mediators and cumulative impacts on the myocardium. DISCUSSION: By combining well curated, prospectively acquired longitudinal data of the NSHD with novel CMR-ECGI data and sharing these results and associated pipelines with the CMR community, MyoFit46 seeks to transform our understanding of how early, mid and later-life risk factor trajectories interact to determine the state of cardiovascular health in older age. TRIAL REGISTRATION: Prospectively registered on ClinicalTrials.gov with trial ID: 19/LO/1774 Multimorbidity Life-Course Approach to Myocardial Health- A Cardiac Sub-Study of the MCRC National Survey of Health and Development (NSHD)

    How Many People are Able to Control a P300/Motor Imagery-Based Brain-Computer Interface?

    No full text
    An EEG based brain-computer system can be used to control external devices such as computers, wheelchairs or Virtual Environments. P300 based BCI systems are optimal for spelling characters with high speed and accuracy, as compared to other BCI paradigms. Motor imagery or SSVEP-based (SteadyState Visual Evoked Potential) systems are optimal to generate a continuous control signal. In this study, 81 subjects tested a P300 based and 99 subjects tested a motor imagery based BCI system. The subjects participating in the P300 study had to spell a 5 character word with only 5 minutes of training. EEG data were acquired to train the system while the subject looked at a 36 character matrix to spell the word WATER. During the real-time phase of the experiment, the subject spelled the word LUCAS, and was provided with the classifier selection accuracy after each of the five letters. The subjects participating in the motor imagery study had to move 40 times a cursor to the right or left side of the computer monitor. Training and classifier calculation were performed with 40 imaginations of left and right hand movement initiated by an arrow pointing to the left and right side. For the P300 system 72.8 % were able to spell with 100 % accuracy and less than 3 % did not spell any character correctly [Guger 09]. For motor imagery 6.2 % achieved an accuracy above 90 % and 6.7 % performed with almost random classification accuracy between 50-59 % [Guger 2003]. It must be noted that for the P300 system the random classification accuracy is 1/36 % and for the motor imagery system it is 50 %. The training time for both systems was almost equal: 6 min for motor imagery, 5 min for P300 and also the montage time for the electrodes was almost equal (5 electrodes for motor imagery and 9 for the P300 system). This study shows that high spelling accuracy can be achieved with the P300 BCI system using approximately five minutes of training data for a large number of non-disabled subjects. The large differences in accuracy between the two systems suggest that with limited amount of training data the P300 based BCI is superior to the motor imagery BCI. Overall, these results are very encouraging and a similar study should be conducted with subjects who have ALS to determine if their accuracy levels are similar. Summarizing it can be said that a P300 based system is suitable for spelling applications, but also e.g. for Smart Home control with several controllable devices. The motor imagery based system is suitable if a continuous control signal is needed

    Effectiveness of reference signal-based methods for removal of EEG artifacts due to subtle movements during fMRI scanning

    No full text
    Objective: Subtle motion of an epileptic patient examined with co-registered EEG and functional MRI (EEG-fMRI) may often lead to spurious fMRI activation patterns when true epileptic spikes are contaminated with motion artefacts. In recent years, methods relying on reference signals for correcting these subtle movements in the EEG have emerged. In this study, the performance of two reference-based devices are compared to the template-based method with regard to their ability to remove movement-related artifacts in EEG measured during scanning. Methods: Measurements were performed with a novel double layer cap consisting of 29 EEG and 29 reference electrodes, and with a current loop cap consisting of 60 electrodes and three current loop wires attached to the cap. EEG was acquired inside the scanner during resting state, as well as when the subject was performing a cued movement task. For the double layer cap recordings, newly developed artifact removal algorithms are introduced and both reference signal-based methods are compared to a template-based correction method. Results: The BCG artifacts occurring at resting state could be removed successfully by both the reference signal-based methods as well as by the template-based method. However, the reference signal-based methods were also capable of removing EEG artifacts induced by subtle movements, whereas the template-based method failed to remove these artifacts. Conclusion: Reference signal-based methods enable to correct for artifacts due to subtle movements, which are not removed by commonly used template-based removal algorithms. Significance: Sensitivity of EEG-fMRI analysis in patients with focal epilepsy is improved by avoiding erroneous detections of subtle movements as epileptic spikes in the EEG

    How Many People Are Able to Control a P300-Based Brain-Computer Interface (BCI)?

    No full text
    An EEG-based brain-computer system can be used to control external devices such as computers, wheelchairs or Virtual Environments. One of the most important applications is a spelling device to aid severely disabled individuals with communication, for example people disabled by amyotrophic lateral sclerosis (ALS). P300-based BCI systems are optimal for spelling characters with high speed and accuracy, as compared to other BCI paradigms such as motor imagery. In this study, 100 subjects tested a P300-based BCI system to spell a 5-character word with only 5 min of training. EEG data were acquired while the subject looked at a 36-character matrix to spell the word WATER. Two different versions of the P300 speller were used: (i) the row/column speller (RC) that flashes an entire column or row of characters and (ii) a single character speller (SC) that flashes each character individually. The subjects were free to decide which version to test. Nineteen subjects opted to test both versions. The BCI system classifier was trained on the data collected for the word WATER. During the real-time phase of the experiment, the subject spelled the word LUCAS, and was provided with the classifier selection accuracy after each of the five letters. Additionally, subjects filled out a questionnaire about age, sex, education, sleep duration, working duration, cigarette consumption, coffee consumption, and level of disturbance that the flashing characters produced. 72.8% (N = 81) of the subjects were able to spell with 100% accuracy in the RC paradigm and 55.3% (N = 38) of the subjects spelled with 100% accuracy in the SC paradigm. Less than 3% of the subjects did not spell any character correctly. People who slept less than 8 h performed significantly better than other subjects. Sex, education, working duration, and cigarette and coffee consumption were not statistically related to differences in accuracy. The disturbance of the flashing characters was rated with a median score of 1 on a scale from 1 to 5 (1, not disturbing; 5, highly disturbing). This study shows that high spelling accuracy can be achieved with the P300 BCI system using approximately 5 min of training data for a large number of non-disabled subjects, and that the RC paradigm is superior to the SC paradigm. 89% of the 81 RC subjects were able to spell with accuracy 80-100%. A similar study using a motor imagery BCI with 99 subjects showed that only 19% of the subjects were able to achieve accuracy of 80-100%. These large differences in accuracy suggest that with limited amounts of training data the P300-based BCI is superior to the motor imagery BCI. Overall, these results are very encouraging and a similar study should be conducted with subjects who have ALS to determine if their accuracy levels are similar
    corecore