1,261 research outputs found
Multi-kw dc power distribution system study program
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors
Research study on multi-KW-DC distribution system
A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles
Picosecond imaging of low-density plasmas by electron deflectometry
We have imaged optical-field ionized plasmas with electron densities as low as 1013 cm−3 on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge. Simulations reproduce the main features of the experiment and allow determination of the energy of the electrons
Critical Behavior of Light
Light is shown to exhibit critical and tricritical behavior in passive
mode-locked lasers with externally injected pulses. It is a first and unique
example of critical phenomena in a one-dimensional many body light-mode system.
The phase diagrams consist of regimes with continuous wave, driven para-pulses,
spontaneous pulses via mode condensation, and heterogeneous pulses, separated
by phase transition lines which terminate with critical or tricritical points.
Enhanced nongaussian fluctuations and collective dynamics are observed at the
critical and tricritical points, showing a mode system analog of the critical
opalescence phenomenon. The critical exponents are calculated and shown to
comply with the mean field theory, which is rigorous in the light system.Comment: RevTex, 5 pages, 3 figure
Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG
Site selective luminescence and magnetic circular dichroism experiments on Cr4+-doped yttrium aluminum garnet and yttrium gallium garnet have been made at low temperature. The spectral assignments for these near-IR lasing materials have been made using experimental data and ligand field calculations guided by the known geometry of the lattices. [S0163-1829(99)07003-4]
The role of high-level calculations in the assignment of the Q-band spectra of chlorophyll
© 2014 AIP Publishing LLC. We recently established a novel assignment of the visible absorption spectrum of chlorophyll-a that sees the two components Qx and Qy of the low-energy Q band as being intrinsically mixed by non-adiabatic coupling. This ended 50 years debate as to the nature of the Q bands, with prior discussion poised only in the language of the Born-Oppenheimer and Condon approximations. The new assignment presents significant ramifications for exciton transport and quantum coherence effects in photosystems. Results from state of the art electronic structure calculations have always been used to justify assignments, but quantitative inaccuracies and systematic failures have historically limited usefulness. We examine the role of CAM-B3LYP time-dependent density-functional theory (TD-DFT) and Symmetry Adapted Cluster-Configuration Interaction (SAC-CI) calculations in first showing that all previous assignments were untenable, in justifying the new assignment, in making some extraordinary predictions that were vindicated by the new assignment, and in then identifying small but significant anomalies in the extensive experimental data record
Active mode-locking of a neodymium-doped fiber laser using intra-cavity pulse compression
Active mode locking of a Nd3+doped fiber laser with piezoelectrically induced Raman-Nath diffraction modulation ie demonstrated. By using intracavity pulse compression, stable pulses of 2.4-psec length are generated at a wavelength of 1054 nm
- …