49 research outputs found

    Direct and dynamic detection of HIV-1 in living cells.

    Get PDF
    In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA) at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research

    Mutations affecting cleavage at the p10-capsid protease cleavage site block Rous sarcoma virus replication

    Get PDF
    A series of amino acid substitutions (M239F, M239G, P240F, V241G) were placed in the p10-CA protease cleavage site (VVAM*PVVI) to change the rate of cleavage of the junction. The effects of these substitutions on p10-CA cleavage by RSV PR were confirmed by measuring the kinetics of cleavage of model peptide substrates containing the wild type and mutant p10-CA sites. The effects of these substitutions on processing of the Gag polyprotein were determined by labeling Gag transfected COS-1 cells with (35)S-Met and -Cys, and immunoprecipitation of Gag and its cleavage products from the media and lysate fractions. All substitutions except M239F caused decreases in detectable Gag processing and subsequent release from cells. Several of the mutants also caused defects in production of the three CA proteins. The p10-CA mutations were subcloned into an RSV proviral vector (RCAN) and introduced into a chick embryo fibroblast cell line (DF-1). All of the mutations except M239F blocked RSV replication. In addition, the effects of the M239F and M239G substitutions on the morphology of released virus particles were examined by electron microscopy. While the M239F particles appeared similar to wild type particles, M239G particles contained cores that were large and misshapen. These results suggest that mutations affecting cleavage at the p10-CA protease cleavage site block RSV replication and can have a negative impact on virus particle morphology

    Probing the HIV-1 Genomic RNA Trafficking Pathway and Dimerization by Genetic Recombination and Single Virion Analyses

    Get PDF
    Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking

    The Molecular Architecture of HIV

    No full text
    Assembly of human immunodeficiency virus type 1 is driven by oligomerization of the Gag polyprotein at the plasma membrane of an infected cell, leading to membrane envelopment and budding of an immature virus particle. Proteolytic cleavage of Gag at five positions subsequently causes a dramatic rearrangement of the interior virion organization to form an infectious particle. Within the mature virus, the genome is encased within a conical capsid core. Here, we describe the molecular architecture of the virus assembly site, the immature virus, the maturation intermediates and the mature virus core and highlight recent advances in our understanding of these processes from electron microscopy and X-ray crystallography studies. (C) 2011 Elsevier Ltd. All rights reserved

    Structural organization of authentic, mature HIV-1 virions and cores

    No full text
    Mature, infectious HIV-1 particles contain a characteristic cone-shaped core that encases the viral RNA and replication proteins. The architectures of mature virions and isolated cores were studied using cryoelectron microscopy. The average size (similar to145 nm) of the virion was unchanged during maturation. Most virions contained a single core but roughly one-third contained two or more cores. Consideration of the capsid protein concentration during core assembly indicated that core formation in vivo is template-mediated rather than concentration-driven. Although most cores were conical, 7% were tubular. These displayed a stacked-disc arrangement with 7-, 8-, 9- or 10-fold axial symmetry. Layer line filtration of these images showed that the capsid subunit arrangement is consistent with a 9.6 nm hexamer resembling that previously seen in the helical tubes assembled from purified capsid protein. A common reflection (1/3.2 nm) shared between the tubular and conical cores suggested they share a similar organization. The extraordinary flexibility observed in the assembly of the mature core appears to be well suited to accommodating variation and hence there may be no single structure for the infectious virion
    corecore