793 research outputs found

    Modeling Regulation of Zinc Uptake via ZIP Transporters in Yeast and Plant Roots

    Get PDF
    In yeast (Saccharomyces cerevisiae) and plant roots (Arabidopsis thaliana) zinc enters the cells via influx transporters of the ZIP family. Since zinc is both essential for cell function and toxic at high concentrations, tight regulation is essential for cell viability. We provide new insight into the underlying mechanisms, starting from a general model based on ordinary differential equations and adapting it to the specific cases of yeast and plant root cells. In yeast, zinc is transported by the transporters ZRT1 and ZRT2, which are both regulated by the zinc-responsive transcription factor ZAP1. Using biological data, parameters were estimated and analyzed, confirming the different affinities of ZRT1 and ZRT2 reported in the literature. Furthermore, our model suggests that the positive feedback in ZAP1 production has a stabilizing function at high influx rates. In plant roots, various ZIP transporters are involved in zinc uptake. Their regulation is largely unknown, but bZIP transcription factors are thought to be involved. We set up three putative models: activator only, activator with dimerization and activator/inhibitor. These were fitted to measurements and analyzed. Simulations show that the activator/inhibitor model outperforms the other two in providing robust and stable homeostasis at reasonable parameter ranges.Comment: 23 pages including 2 tables and 7 figure

    Homogenization approach to water transport in plant tissues with periodic microstructures

    Full text link
    Water flow in plant tissues takes place in two different physical domains separated by semipermeable membranes: cell insides and cell walls. The assembly of all cell insides and cell walls are termed symplast and apoplast, respectively. Water transport is pressure driven in both, where osmosis plays an essential role in membrane crossing. In this paper, a microscopic model of water flow and transport of an osmotically active solute in a plant tissue is considered. The model is posed on the scale of a single cell and the tissue is assumed to be composed of periodically distributed cells. The flow in the symplast can be regarded as a viscous Stokes flow, while Darcy's law applies in the porous apoplast. Transmission conditions at the interface (semipermeable membrane) are obtained by balancing the mass fluxes through the interface and by describing the protein mediated transport as a surface reaction. Applying homogenization techniques, macroscopic equations for water and solute transport in a plant tissue are derived. The macroscopic problem is given by a Darcy law with a force term proportional to the difference in concentrations of the osmotically active solute in the symplast and apoplast; i.e. the flow is also driven by the local concentration difference and its direction can be different than the one prescribed by the pressure gradient.Comment: 31 page

    Relaxation dynamics of an isolated large-spin Fermi gas far from equilibrium

    Full text link
    A fundamental question in many-body physics is how closed quantum systems reach equilibrium. We address this question experimentally and theoretically in an ultracold large-spin Fermi gas where we find a complex interplay between internal and motional degrees of freedom. The fermions are initially prepared far from equilibrium with only a few spin states occupied. The subsequent dynamics leading to redistribution among all spin states is observed experimentally and simulated theoretically using a kinetic Boltzmann equation with full spin coherence. The latter is derived microscopically and provides good agreement with experimental data without any free parameters. We identify several collisional processes, which occur on different time scales. By varying density and magnetic field, we control the relaxation dynamics and are able to continuously tune the character of a subset of spin states from an open to a closed system.Comment: 18 pages, 9 figure

    Engineering spin waves in a high-spin ultracold Fermi gas

    Full text link
    We report on the detailed study of multi-component spin-waves in an s=3/2 Fermi gas where the high spin leads to novel tensorial degrees of freedom compared to s = 1/2 systems. The excitations of a spin-nematic state are investigated from the linear to the nonlinear regime, where the tensorial character is particularly pronounced. By tuning the initial state we engineer the tensorial spin-wave character, such that the magnitude and sign of the counterflow spin-currents are effectively controlled. A comparison of our data with numerical and analytical results shows excellent agreement.Comment: 9 pages, 4 figure

    Detecting the Amplitude Mode of Strongly Interacting Lattice Bosons by Bragg Scattering

    Full text link
    We report the first detection of the Higgs-type amplitude mode using Bragg spectroscopy in a strongly interacting condensate of ultracold atoms in an optical lattice. By the comparison of our experimental data with a spatially resolved, time-dependent dynamic Gutzwiller calculation, we obtain good quantitative agreement. This allows for a clear identification of the amplitude mode, showing that it can be detected with full momentum resolution by going beyond the linear response regime. A systematic shift of the sound and amplitude modes' resonance frequencies due to the finite Bragg beam intensity is observed.Comment: 4 pages + 3 pages appendix, 3 + 2 figure

    Intrinsic Photoconductivity of Ultracold Fermions in Optical Lattices

    Full text link
    We report on the experimental observation of an analog to a persistent alternating photocurrent in an ultracold gas of fermionic atoms in an optical lattice. The dynamics is induced and sustained by an external harmonic confinement. While particles in the excited band exhibit long-lived oscillations with a momentum dependent frequency a strikingly different behavior is observed for holes in the lowest band. An initial fast collapse is followed by subsequent periodic revivals. Both observations are fully explained by mapping the system onto a nonlinear pendulum.Comment: 5+7 pages, 4+4 figure

    Convergent synthesis of digitally-encoded poly(alkoxyamine amide)s

    No full text
    International audiencea Binary-encoded poly(alkoxyamine amide)s were prepared by oligomer ligation. These polymers contain digital sequences based on two monomers defined as 0 and 1 bits. A library of oligomers containing all possible dyads 00, 01, 10 and 11 was prepared and used to construct long coded sequences

    Electrical conduction of ion tracks in tetrahedral amorphous carbon: temperature, field and doping dependence and comparison with matrix data

    Get PDF
    This paper gives an extended overview of the electrical properties of ion tracks in hydrogen-free tetrahedral amorphous carbon (ta-C) with a sp(3) bond fraction of about 80%. The films were grown by mass selected ion beam deposition of 100 eV C-12(+) ions. The ion tracks are generated by irradiation of ta-C films with uranium ions of 1 GeV kinetic energy. Along the ion path a conversion from diamondlike (sp(3)) carbon to graphite-like (sp(2)) carbon takes place. Topography and current measurements of individual ion tracks were performed by atomic force microscopy at ambient temperature. The temperature dependence of the electric conductivity was studied between 15 and 390 K by means of 0.28 mm(2) large contact pads averaging over about 10 7 tracks. For each sample and at each temperature the conductivity as a function of the applied electrical field (non-ohmic behaviour) was measured separately and the data were extrapolated to field zero. In this way, the zero-field conductivity was determined independent from the field dependence. In spite of large differences in the absolute values, the temperature dependence of the zero-field conductivities is found to be very similar in shape for all samples. The conductivities follow a T-1/4 law up to temperatures slightly below room temperature. At higher temperatures a transport mechanism based on over-barrier hopping dominates with an activation energy of about 220 meV for tracks and 260 meV for the ta-C matrix. The field dependence measurements show that the deviation of the I-V characteristics from ohmic behaviour decreases with increasing zero-field conductivity. We also tested Cu-doped ta-C samples and found that they conduct significantly better than pure ta-C. However, the doping also increases the zero-field conductivity resulting in a weaker contrast between the track and matrix. The data are interpreted within the so-called 'barrier model' where the electrons are assumed to move fairly freely in well-conducting sp(2) regions but encounter barriers in track sections consisting of more sp(3)-like bonds
    corecore