13,852 research outputs found
Peak wind speed anemometers /maxometer/ Final report, 26 Mar. 1969 - 25 May 1970
Fabrication and testing of peak wind speed recording devic
Spontaneous centralization of control in a network of company ownerships
We introduce a model for the adaptive evolution of a network of company
ownerships. In a recent work it has been shown that the empirical global
network of corporate control is marked by a central, tightly connected "core"
made of a small number of large companies which control a significant part of
the global economy. Here we show how a simple, adaptive "rich get richer"
dynamics can account for this characteristic, which incorporates the increased
buying power of more influential companies, and in turn results in even higher
control. We conclude that this kind of centralized structure can emerge without
it being an explicit goal of these companies, or as a result of a
well-organized strategy.Comment: 5 Pages, 7 figure
Effects of different vibration frequencies, amplitudes and contraction levels on lower limb muscles during graded isometric contractions superimposed on whole body vibration stimulation
Background: Indirect vibration stimulation, i.e., whole body vibration or upper limb vibration, has been investigated increasingly as an exercise intervention for rehabilitation applications. However, there is a lack of evidence regarding the effects of graded isometric contractions superimposed on whole body vibration stimulation. Hence, the objective of this study was to quantify and analyse the effects of variations in the vibration parameters and contraction levels on the neuromuscular responses to isometric exercise superimposed on whole body vibration stimulation. Methods: In this study, we assessed the 'neuromuscular effects' of graded isometric contractions, of 20%, 40%, 60%, 80% and 100% of maximum voluntary contraction, superimposed on whole body vibration stimulation (V) and control (C), i.e., no-vibration in 12 healthy volunteers. Vibration stimuli tested were 30āHz and 50āHz frequencies and 0.5 mm and 1.5āmm amplitude. Surface electromyographic activity of the vastus lateralis, vastus medialis and biceps femoris were measured during V and C conditions with electromyographic root mean square and electromyographic mean frequency values used to quantify muscle activity and their fatigue levels, respectively. Results: Both the prime mover (vastus lateralis) and the antagonist (biceps femoris) displayed significantly higher (Pā<ā0.05) electromyographic activity with the V than the C condition with varying percentage increases in EMG root-mean-square (EMGrms) values ranging from 20% to 200%. For both the vastus lateralis and biceps femoris, the increase in mean EMGrms values depended on the frequency, amplitude and muscle contraction level with 50āHz-0.5āmm stimulation inducing the largest neuromuscular activity. Conclusions: These results show that the isometric contraction superimposed on vibration stimulation leads to higher neuromuscular activity compared to isometric contraction alone in the lower limbs. The combination of the vibration frequency with the amplitude and the muscle tension together grades the final neuromuscular output.Peer reviewe
FORTEST: Formal methods and testing
Formal methods have traditionally been used for specification and development of software. However there are potential benefits for the testing stage as well. The panel session associated with this paper explores the usefulness
or otherwise of formal methods in various contexts for improving software testing. A number of different possibilities for the use of formal methods are explored and questions raised. The contributors are all members of the UK FORTEST Network on formal methods and testing. Although
the authors generally believe that formal methods
are useful in aiding the testing process, this paper is intended to provoke discussion. Dissenters are encouraged to put their views to the panel or individually to the authors
First measurement of gravitational lensing by cosmic voids in SDSS
We report the first measurement of the diminutive lensing signal arising from
matter underdensities associated with cosmic voids. While undetectable
individually, by stacking the weak gravitational shear estimates around 901
voids detected in SDSS DR7 by Sutter et al. (2012a), we find substantial
evidence for a depression of the lensing signal compared to the cosmic mean.
This depression is most pronounced at the void radius, in agreement with
analytical models of void matter profiles. Even with the largest void sample
and imaging survey available today, we cannot put useful constraints on the
radial dark-matter void profile. We invite independent investigations of our
findings by releasing data and analysis code to the public at
https://github.com/pmelchior/void-lensingComment: 6 pages, 5 figures, as accepted by MNRA
Functional specialization of the yeast Rho1 GTP exchange factors
Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1
The effects of parasitism and body length on positioning within wild fish shoals
The influence of body length and parasitism on the positioning behaviour of individuals in wild fish shoals was investigated by a novel means of capturing entire shoals of the banded killifish (Fundulus diaphanus, Lesueur) using a grid-net that maintained the two-dimensional positions of individuals within shoals.
Fish in the front section of a shoal were larger than those in the rear.
Individuals parasitized by the digenean trematode (Crassiphiala bulboglossa, Haitsma) showed a tendency to occupy the front of shoals. Parasitized fish were also found more in peripheral positions than central ones in a significant number of shoals.
Shoal geometry was affected by the overall parasite prevalence of shoal members; shoals with high parasite prevalence displayed increasingly phallanx-like shoal formations, whereas shoals with low prevalence were more elliptical.
There was no relationship between body length and parasite abundance or prevalence in the fish population which suggests body length and parasite status are independent predictors of positioning behaviour.
Solitary individuals found outside shoals were both more likely to be parasitized and had higher parasite abundance than individuals engaged in shoaling.
Differences in the shoaling behaviour of parasitized and unparasitized fish are discussed in the context of the adaptive manipulation hypothesis
Radio Continuum Jet in NGC 7479
The barred galaxy NGC 7479 hosts a remarkable jet-like radio continuum
feature: bright, 12-kpc long in projection, and hosting an aligned magnetic
field. The degree of polarization is 6%-8% along the jet, and remarkably
constant, which is consistent with helical field models. The radio brightness
of the jet suggests strong interaction with the ISM and hence a location near
the disk plane. We observed NGC 7479 at four wavelengths with the VLA and
Effelsberg radio telescopes. The equipartition strength is 35-40 micro-G for
the total and >10 micro-G for the ordered magnetic field in the jet. The jet
acts as a bright, polarized background. Faraday rotation between 3.5 and 6 cm
and depolarization between 6 and 22 cm can be explained by magneto-ionic gas in
front of the jet, with thermal electron densities of ~0.06 cm**(-3) in the bar
and ~0.03 cm**(-3) outside the bar. The regular magnetic field along the bar
points toward the nucleus on both sides. The regular field in the disk reveals
multiple reversals, probably consisting of field loops stretched by a shearing
gas flow in the bar. The projection of the jet bending in the sky plane is in
the sense opposite to that of the underlying stellar and gaseous spiral
structure. The bending in 3-D is most easily explained as a precessing jet,
with an age less than 10**6 years. Our observations are consistent with very
recent triggering, possibly by a minor merger. NGC 7479 provides a unique
opportunity to study interaction-triggered 15-kpc scale radio jets within a
spiral galaxy.Comment: 18 pages, 21 figures, accepted for publication in the Astrophysical
Journa
- ā¦