5,988 research outputs found

    Pregnancy-associated breast cancer - Special features in diagnosis and treatment

    Get PDF
    For obvious psychological reasons it is difficult to associate pregnancy - a life-giving period of our existence with life-threatening malignancies. Symptoms pointing to malignancy are often ignored by both patients and physicians, and this, together with the greater difficulty of diagnostic imaging, probably results in the proven delay in the detection of breast cancers during pregnancy. The diagnosis and treatment of breast cancer are becoming more and more important, as the fulfillment of the desire to have children is increasingly postponed until a later age associated with a higher risk of carcinoma, and improved cure rates of solid tumors no longer exclude subsequent pregnancies. The following article summarizes the special features of the diagnosis and primary therapy of pregnancy-associated breast cancer with particular consideration of cytostatic therapy

    Анализ поляризационных состояний умеренно релятивистских позитронов при регистрации аннигиляционных фотонов

    Get PDF
    Предложен и обоснован новый метод анализа поляризационных состояний умеренно релятивистских позитронных пучков. В отличие от известных методов предлагается измерить продольную поляризацию позитронов по выходу аннигиляционных квантов из намагниченной железной мишени, через которую проходит позитронный пучок. На базе библиотек GEANT4 построена математическая модель эксперимента. Проведены сравнения с существующей моделью

    Direct evidence for efficient ultrafast charge separation in epitaxial WS2_2/graphene heterostructure

    Full text link
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2_2 and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2_2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2_2 layer. The resulting charge transfer state is found to have a lifetime of 1\sim1\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2_2 and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS2_2/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene.Comment: 28 pages, 14 figure

    Direct evidence for efficient ultrafast charge separation in epitaxial WS<sub>2</sub>/graphene heterostructures

    No full text
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene

    Measurement of the Permanent Electric Dipole Moment of the 129^{129}Xe Atom

    Full text link
    We report on a new measurement of the CP-violating permanent Electric Dipole Moment (EDM) of the neutral 129^{129}Xe atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized 3^3He and 129^{129}Xe samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400~nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result, (4.7±6.4)1028\left(-4.7\pm6.4\right)\cdot 10^{-28} ecm, is consistent with zero and is used to place a new upper limit on the 129^{129}Xe EDM: dXe<1.51027|d_\text{Xe}|<1.5 \cdot 10^{-27} ecm (95% C.L.). We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model

    A model of driven and decaying magnetic turbulence in a cylinder

    Full text link
    Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries, an imposed axial magnetic and electric field. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the {\alpha}-effect in astrophysical applications. Application to the reversed field pinch in plasma confinement devices is discussed.Comment: 7 pages, 4 figures, submitted to Phys. Rev.

    Comment on "On the temperature dependence of the Casimir effect"

    Full text link
    Recently, Brevik et al. [Phys. Rev. E 71, 056101 (2005)] adduced arguments against the traditional approach to the thermal Casimir force between real metals and in favor of one of the alternative approaches. The latter assumes zero contribution from the transverse electric mode at zero frequency in qualitative disagreement with unity as given by the thermal quantum field theory for ideal metals. Those authors claim that their approach is consistent with experiments as well as with thermodynamics. We demonstrate that these conclusions are incorrect. We show specifically that their results are contradicted by four recent experiments and also violate the third law of thermodynamics (the Nernst heat theorem).Comment: 11 pages, 3 figures, changed in accordance with the final published versio

    Effects of Vacuum Polarization in Strong Magnetic Fields with an Allowance Made for the Anomalous Magnetic Moments of Particles

    Full text link
    Given the anomalous magnetic moments of electrons and positrons in the one-loop approximation, we calculate the exact Lagrangian of an intense constant magnetic field that replaces the Heisenberg-Euler Lagrangian in traditional quantum electrodynamics (QED). We have established that the derived generalization of the Lagrangian is real for arbitrary magnetic fields. In a weak field, the calculated Lagrangian matches the standard Heisenberg-Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears, and the Lagrangian tends to a constant determined by the anomalous magnetic moments of the particles.Comment: 19 pages, 3 figure

    Theory of dressed states in quantum optics

    Get PDF
    The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used to develop a general perturbative method for the study of atom-field interaction in quantum optics. In fact, both Dyson series and its dual, through renormalization group methods to remove secular terms from the perturbation series, give the opportunity of a full study of the solution of the Schr\"{o}dinger equation in different ranges of the parameters of the given hamiltonian. In view of recent experiments with strong laser fields, this approach seems well-suited to give a clarification and an improvement of the applications of the dressed states as currently done through the eigenstates of the atom-field interaction, showing that these are just the leading order of the dual Dyson series when the Hamiltonian is expressed in the interaction picture. In order to exploit the method at the best, a study is accomplished of the well-known Jaynes-Cummings model in the rotating wave approximation, whose exact solution is known, comparing the perturbative solutions obtained by the Dyson series and its dual with the same approximations obtained by Taylor expanding the exact solution. Finally, a full perturbative study of high-order harmonic generation is given obtaining, through analytical expressions, a clear account of the power spectrum using a two-level model, even if the method can be successfully applied to a more general model that can account for ionization too. The analysis shows that to account for the power spectrum it is needed to go to first order in the perturbative analysis. The spectrum obtained gives a way to measure experimentally the shift of the energy levels of the atom interacting with the laser field by looking at the shifting of hyper-Raman lines.Comment: Revtex, 17 page

    Isotopic Dependence of the Casimir Force

    Get PDF
    We calculate the dependence of the Casimir force on the isotopic composition of the interacting objects. This dependence arises from the subtle influence of the nuclear masses on the electronic properties of the bodies. We discuss the relevance of these results to current experiments utilizing the iso-electronic effect to search at very short separations for new weak forces suggested by various unification theories.Comment: 12 pages, Revtex (to appear in Physical Review Letters
    corecore