research

Effects of Vacuum Polarization in Strong Magnetic Fields with an Allowance Made for the Anomalous Magnetic Moments of Particles

Abstract

Given the anomalous magnetic moments of electrons and positrons in the one-loop approximation, we calculate the exact Lagrangian of an intense constant magnetic field that replaces the Heisenberg-Euler Lagrangian in traditional quantum electrodynamics (QED). We have established that the derived generalization of the Lagrangian is real for arbitrary magnetic fields. In a weak field, the calculated Lagrangian matches the standard Heisenberg-Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears, and the Lagrangian tends to a constant determined by the anomalous magnetic moments of the particles.Comment: 19 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019