The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used
to develop a general perturbative method for the study of atom-field
interaction in quantum optics. In fact, both Dyson series and its dual, through
renormalization group methods to remove secular terms from the perturbation
series, give the opportunity of a full study of the solution of the
Schr\"{o}dinger equation in different ranges of the parameters of the given
hamiltonian. In view of recent experiments with strong laser fields, this
approach seems well-suited to give a clarification and an improvement of the
applications of the dressed states as currently done through the eigenstates of
the atom-field interaction, showing that these are just the leading order of
the dual Dyson series when the Hamiltonian is expressed in the interaction
picture. In order to exploit the method at the best, a study is accomplished of
the well-known Jaynes-Cummings model in the rotating wave approximation, whose
exact solution is known, comparing the perturbative solutions obtained by the
Dyson series and its dual with the same approximations obtained by Taylor
expanding the exact solution. Finally, a full perturbative study of high-order
harmonic generation is given obtaining, through analytical expressions, a clear
account of the power spectrum using a two-level model, even if the method can
be successfully applied to a more general model that can account for ionization
too. The analysis shows that to account for the power spectrum it is needed to
go to first order in the perturbative analysis. The spectrum obtained gives a
way to measure experimentally the shift of the energy levels of the atom
interacting with the laser field by looking at the shifting of hyper-Raman
lines.Comment: Revtex, 17 page