291 research outputs found

    On the effects of turbulence on a screw dynamo

    Full text link
    In an experiment in the Institute of Continuous Media Mechanics in Perm (Russia) an non--stationary screw dynamo is intended to be realized with a helical flow of liquid sodium in a torus. The flow is necessarily turbulent, that is, may be considered as a mean flow and a superimposed turbulence. In this paper the induction processes of the turbulence are investigated within the framework of mean--field electrodynamics. They imply of course a part which leads to an enhanced dissipation of the mean magnetic field. As a consequence of the helical mean flow there are also helical structures in the turbulence. They lead to some kind of α\alpha--effect, which might basically support the screw dynamo. The peculiarity of this α\alpha--effect explains measurements made at a smaller version of the device envisaged for the dynamo experiment. The helical structures of the turbulence lead also to other effects, which in combination with a rotational shear are potentially capable of dynamo action. A part of them can basically support the screw dynamo. Under the conditions of the experiment all induction effects of the turbulence prove to be rather weak in comparison to that of the main flow. Numerical solutions of the mean--field induction equation show that all the induction effects of the turbulence together let the screw dynamo threshold slightly, at most by one per cent, rise. The numerical results give also some insights into the action of the individual induction effects of the turbulence.Comment: 15 pages, 7 figures, in GAFD prin

    Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    Full text link
    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the P\`eclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to non-local and non-instantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.Comment: 13 pages, 10 figures, published on PR

    The mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow

    Full text link
    The mean electromotive force caused by turbulence of an electrically conducting fluid, which plays a central part in mean--field electrodynamics, is calculated for a rotating fluid. Going beyond most of the investigations on this topic, an additional mean motion in the rotating frame is taken into account. One motivation for our investigation originates from a planned laboratory experiment with a Ponomarenko-like dynamo. In view of this application the second--order correlation approximation is used. The investigation is of high interest in astrophysical context, too. Some contributions to the mean electromotive are revealed which have not been considered so far, in particular contributions to the α\alpha--effect and related effects due to the gradient of the mean velocity. Their relevance for dynamo processes is discussed. In a forthcoming paper the results reported here will be specified to the situation in the laboratory and partially compared with experimental findings.Comment: 16 pages, 2 figures, in PRE pres

    HEart and BRain interfaces in Acute ischemic Stroke (HEBRAS) – rationale and design of a prospective oberservational cohort study

    Get PDF
    Background An effective diagnostic work-up in hospitalized patients with acute ischemic stroke is vital to optimize secondary stroke prevention. The HEart and BRain interfaces in Acute ischemic Stroke (HEBRAS) study aims to assess whether an enhanced MRI set-up and a prolonged Holter-ECG monitoring yields a higher rate of pathologic findings as compared to diagnostic procedures recommended by guidelines (including stroke unit monitoring for at least 24 h, echocardiography and ultrasound of brain-supplying arteries). Methods/Design Prospective observational single-center study in 475 patients with acute ischemic stroke and without known atrial fibrillation. Patients will receive routine diagnostic care in hospital as wells as brain MRI, cardiac MRI, MR angiography of the brain-supplying arteries and Holter-monitoring for up to 10 days. Study patients will be followed up for cardiovascular outcomes at 3 and 12 months after enrolment. Discussion By comparing the results of routine diagnostic care to the study-specific MRI/ECG approach, the primary outcome of HEBRAS is the proportion of stroke patients with pathologic diagnostic findings. Predefined secondary outcomes are the association of stroke localization, autonomic dysbalance and cardiac dysfunction as well as the effect of impaired heart-rate-variability on long-term clinical outcome. The investigator-initiated HEBRAS study will assess whether an enhanced MRI approach and a prolonged ECG monitoring yield a higher rate of pathological findings than current standard diagnostic care to determine stroke etiology. These findings might influence current diagnostic recommendations after acute ischemic stroke. Moreover, HEBRAS will determine the extent and clinical impact of stroke-induced cardiac damage

    Simulating magnetic fields in the Antennae galaxies

    Full text link
    We present self-consistent high-resolution simulations of NGC4038/4039 (the "Antennae galaxies") including star formation, supernova feedback and magnetic fields performed with the N-body/SPH code Gadget, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 1 nG to 100 muG. At the time of the best match with the central region of the Antennae system the magnetic field has been amplified by compression and shear flows to an equilibrium field of approximately 10 muG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly non-linear environment. We also discuss the relevance of the amplification effect for present day magnetic fields in the context of hierarchical structure formation.Comment: 18 pages, 14 figures, accepte

    Alpha-effect dynamos with zero kinetic helicity

    Full text link
    A simple explicit example of a Roberts-type dynamo is given in which the alpha-effect of mean-field electrodynamics exists in spite of point-wise vanishing kinetic helicity of the fluid flow. In this way it is shown that alpha-effect dynamos do not necessarily require non-zero kinetic helicity. A mean-field theory of Roberts-type dynamos is established within the framework of the second-order correlation approximation. In addition numerical solutions of the original dynamo equations are given, that are independent of any approximation of that kind. Both theory and numerical results demonstrate the possibility of dynamo action in the absence of kinetic helicity.Comment: 6 pages, 3 figures, accepted for PR

    Heart Rate Variability and Recurrent Stroke and Myocardial Infarction in Patients With Acute Mild to Moderate Stroke

    Get PDF
    Objectives: In patients with acute ischemic stroke, reduced heart rate variability (HRV) may indicate poor outcome. We tested whether HRV in the acute phase of stroke is associated with higher rates of mortality, recurrent stroke, myocardial infarction (MI) or functional outcome. Materials and Methods: Patients with acute mild to moderate ischemic stroke without known atrial fibrillation were prospectively enrolled to the investigator-initiated Heart and Brain interfaces in Acute Ischemic Stroke (HEBRAS) study (NCT 02142413). HRV parameters were assessed during the in-hospital stay using a 10-min section of each patient's ECG recording at day- and nighttime, calculating time and frequency domain HRV parameters. Frequency of a combined endpoint of recurrent stroke, MI or death of any cause and the respective individual events were assessed 12 months after the index stroke. Patients' functional outcome was measured by the modified Rankin Scale (mRS) at 12 months. Results: We included 308 patients (37% female, median NIHSS = 2 on admission, median age 69 years). Complete follow-up was achieved in 286/308 (93%) patients. At 12 months, 32 (9.5%), 5 (1.7%) and 13 (3.7%) patients had suffered a recurrent stroke, MI or death, respectively. After adjustment for age, sex, stroke severity and vascular risk factors, there was no significant association between HRV and recurrent stroke, MI, death or the combined endpoint. We did not find a significant impact of HRV on a mRS ≥ 2 12 months after the index stroke. Conclusion: HRV did not predict recurrent vascular events in patients with acute mild to moderate ischemic stroke

    Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications

    Get PDF
    SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171-1185
    • …
    corecore