1,205 research outputs found

    EXPORT ENHANCEMENT STRATEGIES FOR SMALL AND MEDIUM RURAL AND AGRICULTURAL FIRMS

    Get PDF
    Literature reports that small and medium firms face greater difficulty in obtaining the necessary export market information and in obtaining financing than do larger firms. Accordingly, the United States has many export promotion and enhancement services, but there is little documentation on the impacts of these services on small and medium rural and agricultural firms. The objectives of this project were to 1) analyze the export assistance needs of small and medium rural and agricultural firms operating in the Northern Plains region at different stages of the export or internationalization process, 2) identify available export assistance and promotion services offered at the federal and state levels to meet the needs of these firms, and 3) identify factors that may increase the effectiveness of export assistance programs. The primary assistance these firms wanted from the government was help in documenting their exports. The primary reasons firms did not seek government assistance were a lack of knowledge of the service and the service is not useful. The most often used non-government information sources were trade or industry associations and banks. Accordingly, policy makers should emphasize programs that complement efforts of private organizations and that target the needs and interests of the firms.export, rural, agriculture, export assistance, Northern Plains, government, Community/Rural/Urban Development, International Development,

    Assessments of Mechanical and Life Limiting Properties of Two Candidate Silicon Nitrides for Stirling Convertor Heater Head Applications

    Get PDF
    NASA Glenn Research Center is developing advanced technology for Stirling convertors with a target of significantly improving the specific power and efficiency of the convertor and overall generator for Mars rovers and deep space missions. One specific approach to the target has been recognized as the use of appropriate high-temperature materials. As a series of ceramic material approaches in Advanced Stirling Convertor Development Program in fiscal year 2005, two commercial, structural silicon nitrides AS800 (Honeywell, Torrence, California) and SN282 (Kyocera, Vancouver, Washington) were selected and their mechanical and life limiting properties were characterized at 1050 C in air. AS800 exhibited both strength and Weibull modulus greater than SN282. A life limiting phenomenon was apparent in AS800 with a low slow crack growth parameter n = 15; whereas, a much increased resistance to slow crack growth was found in SN282 with n greater than 100. Difference in elastic modulus and thermal conductivity was negligible up to 1200 C between the two silicon nitrides. The same was true for the coefficient of thermal expansion up to 1400 C

    Reversible skew laurent polynomial rings and deformations of poisson automorphisms

    Get PDF
    A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface

    Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    Get PDF
    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph)

    Gratitude to God, Self‐Rated Health, and Depressive Symptoms

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107511/1/jssr12110.pd

    Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    Get PDF
    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time

    Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    Get PDF
    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a highly controlled laboratory environment. This paper focuses on the last element and presents a preliminary methodology for creep rate prediction, the experimental methods, test challenges, and results from benchmark testing of a trial MarM-247 heater head test article. The results compare favorably with the analytical strain predictions. A description of other test findings is provided, and recommendations for future test procedures are suggested. The manuscript concludes with describing the potential impact of the heater head creep life assessment and benchmark testing effort on the ASC program

    Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    Get PDF
    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also includes direct benchmark experimental creep assessment. This element provides high-fidelity creep testing of prototypical heater head test articles to investigate the relevant material issues and multiaxial stress state. Benchmark testing provides required data to evaluate the complex life assessment methodology and to validate that analysis. Results from current benchmark heater head tests and newly developed experimental methods are presented. In the concluding remarks, the test results are shown to compare favorably with the creep strain predictions and are the first experimental evidence for a robust ASC heater head creep life
    corecore