13 research outputs found

    Calorimetric Study of Helix aspersa Maxima Hemocyanin Isoforms

    No full text
    The thermal unfolding of hemocyanin isoforms, β-HaH and αD+N-HaH, isolated from the hemolymph of garden snails Helix aspersa maxima, was studied by means of differential scanning calorimetry (DSC). One transition, with an apparent transition temperature (Tm) at 79.88°C, was detected in the thermogram of β-HaH in 20 mM HEPES buffer, containing 0.1 M NaCl, 5 mM CaCl2, and 5 mM MgCl2, pH 7.0, at scan rate of 1.0°C min−1. By means of successive annealing procedure, two individual transitions were identified in the thermogram of αD+N-HaH. Denaturation of both hemocyanins was found to be an irreversible process. The scan-rate dependence of the calorimetric profiles indicated that the thermal unfolding of investigated hemocyanins was kinetically controlled. The thermal denaturation of the isoforms β-HaH and αD+N-HaH was described by the two-state irreversible model, and parameters of the Arrhenius equation were calculated

    Structural, Thermal, and Storage Stability of Rapana Thomasiana Hemocyanin in the Presence of Cholinium-Amino Acid-Based Ionic Liquids

    No full text
    Novel biocompatible compounds that stabilize proteins in solution are in demand for biomedical and/or biotechnological applications. Here, we evaluated the effect of six ionic liquids, containing mono- or dicholinium [Chol]1or2 cation and anions of charged amino acids such as lysine [Lys], arginine [Arg], aspartic acid [Asp], or glutamic acid [Glu], on the structure, thermal, and storage stability of the Rapana thomasiana hemocyanin (RtH). RtH is a protein with huge biomedicinal potential due to its therapeutic, drug carrier, and adjuvant properties. Overall, the ionic liquids (ILs) induce changes in the secondary structure of RtH. However, the structure near the Cu-active site seems unaltered and the oxygen-binding capacity of the protein is preserved. The ILs showed weak antibacterial activity when tested against three Gram-negative and three Gram-positive bacterial strains. On the contrary, [Chol][Arg] and [Chol][Lys] exhibited high anti-biofilm activity against E. coli 25213 and S. aureus 29213 strains. In addition, the two ILs were able to protect RtH from chemical and microbiological degradation. Maintained or enhanced thermal stability of RtH was observed in the presence of all ILs tested, except for RtH-[Chol]2[Glu]

    Conformational States of the Rapana thomasiana Hemocyanin and Its Substructures Studied by Dynamic Light Scattering and Time-Resolved Fluorescence Spectroscopy

    No full text
    Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another

    Rapana thomasiana hemocyanin (RtH): Comparison of the two isoforms, RtH1 and RtH2, at 19 angstrom 16 angstrom resolution

    No full text
    Three-dimensional (3D) reconstructions of the two 8.4 MDa Rapana thomasiana hemocyanin isoforms, RtH1 and RtH2, have been obtained by cryoelectron microscopy of molecules embedded in vitreous ice and single particle image processing. The final 3D structures of the RtH1 and RtH2 didecamers at 19 angstrom and 16 angstrom resolution, respectively, are very similar to earlier reconstructions of gastropodan hemocyanins, revealing structural features such as the obliquely oriented subunits, the five- and two-fold symmetrical axes. Three new interactions are defined; two of them connecting the arch and the wall while the third is formed between the collar and the wall. The collar-wall connection and one of the arch-wall connections are positioned between two individual subunit dimers, while the second arch-wall connection is located between two subunits within the subunit dimer. All three interactions establish connections to the first tier of the wall. Furthermore, for each interaction we have allocated two first tier functional units most likely involved in forming the connections.

    Antitumor Properties of Epitope-Specific Engineered Vaccine in Murine Model of Melanoma

    No full text
    Finding new effective compounds of natural origin for composing anti-tumor vaccines is one of the main goals of antitumor research. Promising anti-cancer agents are the gastropodan hemocyanins–multimeric copper-containing glycoproteins used so far for therapy of different tumors. The properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) upon their use as carrier-proteins in conjugated vaccines, containing ganglioside mimotope GD3P4 peptide, were studied in the developed murine melanoma model. Murine melanoma cell line B16F10 was used for solid tumor establishment in C57BL/6 mice using various schemes of therapy. Protein engineering, flow cytometry, and cytotoxicity assays were also performed. The administration of the protein-engineered vaccines RtH-GD3P4 or HaH-GD3P4 under the three different regimens of therapy in the B16F10 murine melanoma model suppressed tumor growth, decreased tumor incidence, and prolonged the survival of treated animals. The immunization of experimental mice induced an infiltration of immunocompetent cells into the tumors and generated cytotoxic tumor-specific T cells in the spleen. The treatment also generates significantly higher levels of tumor-infiltrated M1 macrophages, compared to untreated tumor-bearing control mice. This study demonstrated a promising approach for cancer therapy having potential applications for cancer vaccine research
    corecore