2,069 research outputs found
Removal of filler material from large high energy formed parts
Filler material is removed by applying steam heat at 88.99 C to underside of workpiece and allowing filler to melt and drain from the waffle grids
3D integrated superconducting qubits
As the field of superconducting quantum computing advances from the few-qubit
stage to larger-scale processors, qubit addressability and extensibility will
necessitate the use of 3D integration and packaging. While 3D integration is
well-developed for commercial electronics, relatively little work has been
performed to determine its compatibility with high-coherence solid-state
qubits. Of particular concern, qubit coherence times can be suppressed by the
requisite processing steps and close proximity of another chip. In this work,
we use a flip-chip process to bond a chip with superconducting flux qubits to
another chip containing structures for qubit readout and control. We
demonstrate that high qubit coherence (, s) is
maintained in a flip-chip geometry in the presence of galvanic, capacitive, and
inductive coupling between the chips
Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments
We have systematically investigated the energy resolution of a magnetic
micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies
ranging from to 150 keV. For atoms we obtained absolute energy
resolutions down to eV and relative energy resolutions
down to . We also studied in detail the MMC
energy-response function to molecular projectiles of up to mass 56 u. We have
demonstrated the capability of identifying neutral fragmentation products of
these molecules by calorimetric mass spectrometry. We have modeled the MMC
energy-response function for molecular projectiles and conclude that
backscattering is the dominant source of the energy spread at the impact
energies investigated. We have successfully demonstrated the use of a detector
absorber coating to suppress such spreads. We briefly outline the use of MMC
detectors in experiments on gas-phase collision reactions with neutral
products. Our findings are of general interest for mass spectrometric
techniques, particularly for those desiring to make neutral-particle mass
measurements
Влияние способа регулирования на экономичность работы забойного турбонасоса
Lasers as production tools offer several advantages, which are especially relevant for the production of solar cells. The contactless and localized nature of the energy deposition allows new processes, such as laser selective emitter doping, laser ablation of dielectric coatings and via drilling for back contact cell concepts. A critical factor is the selection of suitable laser sources and parameters in a manner that adapts the laser process to the requirements of the material, the process nature and the solar cell properties. In this paper three laser processes are investigated with the goal to identify the most suitable laser source
Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring
Rate coefficients for photorecombination (PR) and cross sections for
electron-impact ionization (EII) of Fe forming Fe and
Fe, respectively, have been measured by employing the electron-ion
merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR
and EII of Fe ions in a plasma are derived from the experimental
measurements. Simple parametrizations of the experimentally derived plasma rate
coefficients are provided for use in the modeling of photoionized and
collisionally ionized plasmas. In the temperature ranges where Fe is
expected to form in such plasmas the latest theoretical rate coefficients of
Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron.
Astrophys. 466, 771 (2007)] for EII agree with the experimental results to
within the experimental uncertainties. Common features in the PR and EII
resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical
Review
A Weighted Estimate for the Square Function on the Unit Ball in \C^n
We show that the Lusin area integral or the square function on the unit ball
of \C^n, regarded as an operator in weighted space has a linear
bound in terms of the invariant characteristic of the weight. We show a
dimension-free estimate for the ``area-integral'' associated to the weighted
norm of the square function. We prove the equivalence of the classical
and the invariant classes.Comment: 11 pages, to appear in Arkiv for Matemati
Absolute rate coefficients for photorecombination of berylliumlike and boronlike silicon ions
We report measured rate coefficients for electron-ion recombination for Si10+
forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were
performed using the electron-ion merged-beams technique at a heavy-ion storage
ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from
0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban
et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally
derived rate coefficients for the recombination of Si9+ and Si10+ ions in a
plasma are presented along with simple parameterizations. These rate
coefficients are useful for the modeling of the charge balance of silicon in
photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas
(Si10+ only). In the corresponding temperature ranges, the experimentally
derived rate coefficients agree with the latest corresponding theoretical
results within the experimental uncertainties.Comment: 17 pages, 7 figures, 3 tables, 66 references, submitted to the J.
Phys. B special issue on atomic and molecular data for astrophysicist
Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations
The electron-ion recombination rate coefficient for Si IV forming Si III was
measured at the heavy-ion storage-ring TSR. The experimental electron-ion
collision energy range of 0-186 eV encompassed the 2p(6) nl n'l' dielectronic
recombination (DR) resonances associated with 3s to nl core excitations, 2s
2p(6) 3s nl n'l' resonances associated with 2s to nl (n=3,4) core excitations,
and 2p(5) 3s nl n'l' resonances associated with 2p to nl (n=3,...,infinity)
core excitations. The experimental DR results are compared with theoretical
calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via
the 3s to 3p n'l' and 3s to 3d n'l' (both n'=3,...,6) and 2p(5) 3s 3l n'l'
(n'=3,4) capture channels. Finally, the experimental and theoretical plasma DR
rate coefficients for Si IV forming Si III are derived and compared with
previously available results.Comment: 13 pages, 9 figures, 3 tables. Accepted for publication in Physical
Review
Characterization of ellipses as uniformly dense sets with respect to a family of convex bodies
Let K \subset R^N be a convex body containing the origin. A measurable set G
\subset R^N with positive Lebesgue measure is said to be uniformly K-dense if,
for any fixed r > 0, the measure of G \cap (x + rK) is constant when x varies
on the boundary of G (here, x + rK denotes a translation of a dilation of K).
We first prove that G must always be strictly convex and at least C1,1-regular;
also, if K is centrally symmetric, K must be strictly convex, C1,1-regular and
such that K = G - G up to homotheties; this implies in turn that G must be
C2,1- regular. Then for N = 2, we prove that G is uniformly K-dense if and only
if K and G are homothetic to the same ellipse. This result was already proven
by Amar, Berrone and Gianni in [3]. However, our proof removes their regularity
assumptions on K and G and, more importantly, it is susceptible to be
generalized to higher dimension since, by the use of Minkowski's inequality and
an affine inequality, avoids the delicate computations of the higher-order
terms in the Taylor expansion near r = 0 for the measure of G\cap(x+rK) (needed
in [3])
- …