Let K \subset R^N be a convex body containing the origin. A measurable set G
\subset R^N with positive Lebesgue measure is said to be uniformly K-dense if,
for any fixed r > 0, the measure of G \cap (x + rK) is constant when x varies
on the boundary of G (here, x + rK denotes a translation of a dilation of K).
We first prove that G must always be strictly convex and at least C1,1-regular;
also, if K is centrally symmetric, K must be strictly convex, C1,1-regular and
such that K = G - G up to homotheties; this implies in turn that G must be
C2,1- regular. Then for N = 2, we prove that G is uniformly K-dense if and only
if K and G are homothetic to the same ellipse. This result was already proven
by Amar, Berrone and Gianni in [3]. However, our proof removes their regularity
assumptions on K and G and, more importantly, it is susceptible to be
generalized to higher dimension since, by the use of Minkowski's inequality and
an affine inequality, avoids the delicate computations of the higher-order
terms in the Taylor expansion near r = 0 for the measure of G\cap(x+rK) (needed
in [3])