196 research outputs found

    Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond

    Get PDF
    AbstractThe tropical tree Trichilia dregeana Sond. has recalcitrant seeds that cannot be stored by conventional seed banking methods that include drying and storage at low temperatures, or by using cryopreservation protocols that have been successfully applied to recalcitrant-seeded species such as Castanea sativa. We recently showed that in C. sativa both excision of the embryonic axes and subsequent dehydration cause transitory (5min) bursts of extracellular superoxide (O2−) production. Here we show that both excision and partial dehydration of the embryonic axes from seeds of T. dregeana cause large, prolonged extracellular bursts of O2−. Furthermore, during rehydration after cryopreservation, another burst of O2− occurs with slightly different kinetics. Compared with C. sativa, rates of O2− production in T. dregeana are approximately twice as great and decline much more slowly, suggesting that excessive radical formation may be responsible for poor survival of the axes following cryopreservation. Fractionating the cell wall proteins of embryonic axes and cotyledons in conjunction with electrophoretic analyses of the fractions showed that most O2− was produced by two peroxidases with molecular masses of c. 50 and 80kD that were loosely bound to the cell walls of the embryonic axes. Future successful cryopreservation of T. dregeana would appear to depend on manipulations of O2− production, and the discovery of peroxidases as the enzymes responsible described here may help in the development of more effective protocols

    Revision of the Cretaceous shark Protoxynotus (Chondrichthyes, Squaliformes) and early evolution of somniosid sharks

    Get PDF
    Due to the peculiar combination of dental features characteristic for different squaliform families, the position of the Late Cretaceous genera Protoxynotus and Paraphorosoides within Squaliformes has long been controversial. In this study, we revise these genera based on previously known fossil teeth and new dental material. The phylogenetic placement of Protoxynotus and Paraphorosoides among other extant and extinct squaliforms is discussed based on morphological characters combined with DNA sequence data of extant species. Our results suggest that Protoxynotus and Paraphorosoides should be included in the Somniosidae and that Paraphorosoides is a junior synonym of Protoxynotus. New dental material from the Campanian of Germany and the Maastrichtian of Austria enabled the description of a new species Protoxynotus mayrmelnhofi sp. nov. In addition, the evolution and origin of the characteristic squaliform tooth morphology are discussed, indicating that the elongated lower jaw teeth with erected cusp and distinct dignathic heterodonty of Protoxynotus represents a novel functional adaptation in its cutting-clutching type dentition among early squaliform sharks. Furthermore, the depositional environment of the tooth bearing horizons allows for an interpretation of the preferred habitat of this extinct dogfish shark, which exclusively occupied shelf environments of the Boreal- and northern Tethyan realms during the Late Cretaceous.publishedVersio

    The Achene Mucilage Hydrated in Desert Dew Assists Seed Cells in Maintaining DNA Integrity: Adaptive Strategy of Desert Plant Artemisia sphaerocephala

    Get PDF
    Despite proposed ecological importance of mucilage in seed dispersal, germination and seedling establishment, little is known about the role of mucilage in seed pre-germination processes. Here we investigated the role of mucilage in assisting achene cells to repair DNA damage during dew deposition in the desert. Artemisia sphaerocephala achenes were first treated γ-irradiation to induce DNA damage, and then they were repaired in situ in the desert dew. Dew deposition duration can be as long as 421 min in early mornings. Intact achenes absorbed more water than demucilaged achenes during dew deposition and also carried water for longer time following sunrise. After 4-d dew treatment, DNA damage of irradiated intact and demucilaged achenes was reduced to 24.38% and 46.84%, respectively. The irradiated intact achenes exhibited much higher DNA repair ratio than irradiated demucilaged achenes. Irradiated intact achenes showed an improved germination and decreased nonviable achenes after dew treatment, and significant differences in viability between the two types of achenes were detected after 1020 min of dew treatment. Achene mucilage presumably plays an ecologically important role in the life cycle of A. sphaerocephala by aiding DNA repair of achene cells in genomic-stressful habitats

    Social Waves in Giant Honeybees Repel Hornets

    Get PDF
    Giant honeybees (Apis dorsata) nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed ‘shimmering’. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.). Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a ‘shelter zone’ of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style

    Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet

    Get PDF
    The hypolithic microbial community associated with quartz pavement at a high-altitude tundra location in central Tibet is described. A small-scale ecological survey indicated that 36% of quartz rocks were colonized. Community profiling using terminal restriction fragment length polymorphism revealed no significant difference in community structure among a number of colonized rocks. Real-time quantitative PCR and phylogenetic analysis of environmental phylotypes obtained from clone libraries were used to elucidate community structure across all domains. The hypolithon was dominated by cyanobacterial phylotypes (73%) with relatively low frequencies of other bacterial phylotypes, largely represented by the chloroflexi, actinobacteria, and bacteriodetes. Unidentified crenarchaeal phylotypes accounted for 4% of recoverable phylotypes, while algae, fungi, and mosses were indicated by a small fraction of recoverable phylotypes

    Lichen rehydration in heavy metal polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae

    Get PDF
    Lichens are adapted to desiccation/rehydration and accumulate heavy metals, which induce ROS especially from the photobiont photosynthetic pigments. Although their mechanisms of abiotic stress tolerance are still to be unravelled, they seem related to symbionts' reciprocal upregulation of antioxidant systems. With the aim to study the effect of Pb on oxidative status during rehydration, the kinetics of intracellular ROS, lipid peroxidation and chlorophyll autofluorescence of whole Ramalina farinacea thalli and its isolated microalgae (Trebouxia TR1 and T. TR9) was recorded. A genetic characterization of the microalgae present in the thalli used was also carried out in order to assess possible correlations among the relative abundance of each phycobiont, their individual physiological responses and that of the entire thallus. Unexpectedly, Pb decreased ROS and lipid peroxidation in thalli and its phycobionts, associated with a lower chlorophyll autofluorescence. Each phycobiont showed a particular pattern, but the oxidative response of the thallus paralleled the TR1's, agreeing with the genetic identification of this strain as the predominant phycobiont. We conclude that: (1) the lichen oxidative behaviour seems to be modulated by the predominant phycobiont and (2) Pb evokes in R. farinacea and its phycobionts strong mechanisms to neutralize its own oxidant effects along with those of rehydration

    How to Join a Wave: Decision-Making Processes in Shimmering Behavior of Giant Honeybees (Apis dorsata)

    Get PDF
    Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest

    Seed Germination Strategies of Mediterranean Halophytes Under Saline Condition

    Get PDF
    The study of the ecological strategies adopted by seed plants to ensure their success in different environments is closely related to germination ecology. This implies a careful knowledge of ecophysiology of seeds and, therefore, also of interaction between plants and the complexity of external factors. In particular, the environmental conditions of the area where a plant grows and produces seeds represent the main factors that influence successful seedling establishment. The physical-chemical features of habitats, and therefore their heterogeneity, affect the behavior of seeds in different ways. In addition to the timing of seed production, they can induce or terminate dormancy and/or germination and influence the germination pattern of different seeds in the same plant and so the composition and dispersal of soil seed banks. Salinity is a major abiotic stress affecting growth and plant productivity worldwide, constituting one of the main topics of study in the field of plant physiology. Halophytes are the plants that have the availability to survive and develop in different types of saline habitats. In this chapter, we consider some examples to illustrate the main adaptive strategies used by the seeds of halophytes on ecophysiological perspectives to survive in habitats affected by high levels of salinity. The focus is on the species that live in the brackish or salt coastal areas of the Mediterranean Basin. On these environments, the salt stress may act synergistically with intense anthropic pressure, generating profound alterations in the ecosystem and threatening the survival of the plant species very sensitive to the effects of climate change also. The results show the main diverse strategies, such as dormancy cycling, seed heteromorphism, and recovery capacity, from saline shock, favoring the chances of seed survival. The interaction between temperature and salinity during germination was also discussed assessing its crucial role as an ecological strategy
    corecore