626 research outputs found

    Notch Signaling Controls the Differentiation of Transporting Epithelia and Multiciliated Cells in the Zebrafish Pronephros

    Get PDF
    Epithelial tubules consist of multiple cell types that are specialized for specific aspects of organ function. In the zebrafish pronephros, multiciliated cells (MCCs) are specialized for fluid propulsion, whereas transporting epithelial cells recover filtered-blood solutes. These cell types are distributed in a \u27salt-and-pepper\u27 fashion in the pronephros, suggesting that a lateral inhibition mechanism may play a role in their differentiation. We find that the Notch ligand Jagged 2 is expressed in MCCs and that notch3 is expressed in pronephric epithelial cells. Morpholino knockdown of either jagged 2 or notch3, or mutation in mind bomb (in which Notch signaling is impaired), dramatically expands ciliogenic gene expression, whereas ion transporter expression is lost, indicating that pronephric cells are transfated to MCCs. Conversely, ectopic expression of the Notch1 a intracellular domain represses MCC differentiation. Gamma-secretase inhibition using DAPT demonstrated a requirement for Notch signaling early in pronephric development, before the pattern of MCC differentiation is apparent. Strikingly, we find that jagged 2 knockdown generates extra cilia and is sufficient to rescue the kidney cilia mutant double bubble. Our results indicate that Jagged 2/Notch signaling modulates the number of multiciliated versus transporting epithelial cells in the pronephros by way of a genetic pathway involving repression of rfx2, a key transcriptional regulator of the ciliogenesis program

    An all-optical approach for probing microscopic flows in living embryos

    Get PDF
    Living systems rely on fluid dynamics from embryonic development to adulthood. To visualize biological fluid flow, devising the proper labeling method compatible with both normal biology and in vivo imaging remains a major experimental challenge. Here, we describe a simple strategy for probing microscopic fluid flows in vivo that meets this challenge. An all-optical procedure combining femtosecond laser ablation, fast confocal microscopy and 3D-particle tracking was devised to label, image and quantify the flow. This approach is illustrated by studying the flow generated within a micrometer scale ciliated vesicle located deep inside the zebrafish embryo and involved in breaking left-right embryonic symmetry. By mapping the velocity field within the vesicle and surrounding a single beating cilium, we show this method can address the dynamics of cilia-driven flows at multiple length scales, and can validate the flow features as predicted from previous simulations. This approach provides new experimental access to questions of microscopic fluid dynamics in vivo

    Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes

    Get PDF
    AbstractPodocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell–cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell–cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate

    Towards relativistic orbit fitting of Galactic center stars and pulsars

    Full text link
    The S stars orbiting the Galactic center black hole reach speeds of up to a few percent the speed of light during pericenter passage. This makes, for example, S2 at pericenter much more relativistic than known binary pulsars, and opens up new possibilities for testing general relativity. This paper develops a technique for fitting nearly-Keplerian orbits with perturbations from Schwarzschild curvature, frame dragging, and spin-induced torque, to redshift measurements distributed along the orbit but concentrated around pericenter. Both orbital and light-path effects are taken into account. It turns out that absolute calibration of rest-frame frequency is not required. Hence, if pulsars on orbits similar to the S stars are discovered, the technique described here can be applied without change, allowing the much greater accuracies of pulsar timing to be taken advantage of. For example, pulse timing of 3 microsec over one hour amounts to an effective redshift precision of 30 cm/s, enough to measure frame dragging and the quadrupole moment from an S2-like orbit, provided problems like the Newtonian "foreground" due to other masses can be overcome. On the other hand, if stars with orbital periods of order a month are discovered, the same could be accomplished with stellar spectroscopy from the E-ELT at the level of 1 km/s.Comment: 22 pages, 9 figures, published in the Ap

    Leveraging Relationships to Get Ready for Change

    Full text link

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Teaching molecular genetics: chapter 4—positional cloning of genetic disorders

    Get PDF
    Positional cloning is the approach of choice for the identification of genetic mutations underlying the pathological development of diseases with simple Mendelian inheritance. It consists of different consecutive steps, starting with recruitment of patients and DNA collection, that are critical to the overall process. A genetic analysis of the enrolled patients and their families is performed, based on genetic recombination frequencies generated by meiotic cross-overs and on genome-wide molecular studies, to define a critical DNA region of interest. This analysis culminates in a statistical estimate of the probability that disease features may segregate in the families independently or in association with specific molecular markers located in known regions. In this latter case, a marker can be defined as being linked to the disease manifestations. The genetic markers define an interval that is a function of their recombination frequencies with the disease, in which the disease gene is localised. The identification and characterisation of chromosome abnormalities as translocations, deletions and duplications by classical cytogenetic methods or by the newly developed microarray-based comparative genomic hybridisation (array CGH) technique may define extensions and borders of the genomic regions involved. The step following the definition of a critical genomic region is the identification of candidate genes that is based on the analysis of available databases from genome browsers. Positional cloning culminates in the identification of the causative gene mutation, and the definition of its functional role in the pathogenesis of the disorder, by the use of cell-based or animal-based experiments. More often, positional cloning ends with the generation of mice with homologous mutations reproducing the human clinical phenotype. Altogether, positional cloning has represented a fundamental step in the research on genetic renal disorders, leading to the definition of several disease mechanisms and allowing a proper diagnostic approach to many conditions

    How managers can build trust in strategic alliances: a meta-analysis on the central trust-building mechanisms

    Get PDF
    Trust is an important driver of superior alliance performance. Alliance managers are influential in this regard because trust requires active involvement, commitment and the dedicated support of the key actors involved in the strategic alliance. Despite the importance of trust for explaining alliance performance, little effort has been made to systematically investigate the mechanisms that managers can use to purposefully create trust in strategic alliances. We use Parkhe’s (1998b) theoretical framework to derive nine hypotheses that distinguish between process-based, characteristic-based and institutional-based trust-building mechanisms. Our meta-analysis of 64 empirical studies shows that trust is strongly related to alliance performance. Process-based mechanisms are more important for building trust than characteristic- and institutional-based mechanisms. The effects of prior ties and asset specificity are not as strong as expected and the impact of safeguards on trust is not well understood. Overall, theoretical trust research has outpaced empirical research by far and promising opportunities for future empirical research exist

    TRPP2 and TRPV4 form a polymodal sensory channel complex

    Get PDF
    The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis
    • …
    corecore