1,726 research outputs found

    Aerobic fitness is associated with greater white matter integrity in children

    Get PDF
    Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA) in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks. © 2014 Chaddock-Heyman, Erickson, Holtrop, Voss, Pontifex, Raine, Hillman and Kramer

    How managers can build trust in strategic alliances: a meta-analysis on the central trust-building mechanisms

    Get PDF
    Trust is an important driver of superior alliance performance. Alliance managers are influential in this regard because trust requires active involvement, commitment and the dedicated support of the key actors involved in the strategic alliance. Despite the importance of trust for explaining alliance performance, little effort has been made to systematically investigate the mechanisms that managers can use to purposefully create trust in strategic alliances. We use Parkhe’s (1998b) theoretical framework to derive nine hypotheses that distinguish between process-based, characteristic-based and institutional-based trust-building mechanisms. Our meta-analysis of 64 empirical studies shows that trust is strongly related to alliance performance. Process-based mechanisms are more important for building trust than characteristic- and institutional-based mechanisms. The effects of prior ties and asset specificity are not as strong as expected and the impact of safeguards on trust is not well understood. Overall, theoretical trust research has outpaced empirical research by far and promising opportunities for future empirical research exist

    Peripheral electrical stimulation in Alzheimer's Disease: A randomized controlled trial on cognition and behavior

    Get PDF
    In a number of studies, peripheral electrical nerve stimulation has been applied to Alzheimer's disease (AD) patients who lived in a nursing home. Improvements were observed in memory, verbal fluency, affective behavior, activities of daily living and on the rest-activity rhythm and pupillary light reflex. The aim of the present, randomized, placebo-controlled, parallel-group clinical trial was to examine the effects of electrical stimulation on cognition and behavior in AD patients who still live at home. Repeated measures analyses of variance revealed no effects of the intervention in the verum group (n = 32) compared with the placebo group (n = 30) on any of the cognitive and behavioral outcome measures. However, the majority of the patients and the caregivers evaluated the treatment procedure positively, and applying the daily treatment at home caused minimal burden. The lack of treatment effects calls for reconsideration of electrical stimulation as a symptomatic treatment in A

    Protective Efficacy of Menthol Propylene Glycol Carbonate Compared to N, N-diethyl-Methylbenzamide Against Mosquito Bites in Northern Tanzania.

    Get PDF
    The reduction of malaria parasite transmission by preventing human-vector contact is critical in lowering disease transmission and its outcomes. This underscores the need for effective and long lasting arthropod/insect repellents. Despite the reduction in malaria transmission and outcomes in Tanzania, personal protection against mosquito bites is still not well investigated. This study sought to determine the efficacy of menthol propylene glycol carbonate (MR08), Ocimum suave as compared to the gold standard repellent N, N-diethyl-methylbenzamide (DEET), either as a single dose or in combination (blend), both in the laboratory and in the field against Anopheles gambiae s.l and Culex quinquefasciatus. In the laboratory evaluations, repellents were applied on one arm while the other arm of the same individual was treated with a base cream. Each arm was separately exposed in cages with unfed female mosquitoes. Repellents were evaluated either as a single dose or as a blend. Efficacy of each repellent was determined by the number of mosquitoes that landed and fed on treated arms as compared to the control or among them. In the field, evaluations were performed by human landing catches at hourly intervals from 18:00  hr to 01:00  hr. A total of 2,442 mosquitoes were collected during field evaluations, of which 2,376 (97.30%) were An. gambiae s.l while 66 (2.70%) were Cx. quinquefaciatus. MR08 and DEET had comparatively similar protective efficacy ranging from 92% to 100 for both single compound and blends. These findings indicate that MR08 has a similar protective efficacy as DEET for personal protection outside bed nets when used singly and in blends. Because of the personal protection provided by MR08, DEET and blends as topical applicants in laboratory and field situations, these findings suggest that, these repellents could be used efficiently in the community to complement existing tools. Overall, Cx. quinquefasciatus were significantly prevented from blood feeding compared to An. gambiae s.l. The incorporation of these topical repellents for protection against insect bites can be of additional value in the absence or presence of IRS and ITNs coverage. However, a combination of both the physical (bed nets) and the repellent should be used in an integrated manner for maximum protection, especially before going to bed. Additional research is needed to develop repellents with longer duration of protection

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Ovine Fetal Thymus Response to Lipopolysaccharide-Induced Chorioamnionitis and Antenatal Corticosteroids

    Get PDF
    RATIONALE: Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS) causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. METHODS: Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days). LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. RESULTS: Intra-amniotic LPS decreased the cortico-medullary (C/M) ratio of the thymus and increased Toll-like receptor (TLR) 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. CONCLUSION: Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment with antenatal corticosteroids before LPS partially attenuated the LPS-induced effects but increased apoptosis in the fetal thymus. Corticosteroid administration after the inflammatory stimulus did not inhibit the LPS effects on the fetal thymus

    Body mass index, adiposity rebound and early feeding in a longitudinal cohort (Raine study)

    Get PDF
    Objective: This study examined the influence of type and duration of infant feeding on adiposity rebound and the tracking of body mass index (BMI) from birth to 14 years. Methods: A sample of 1330 individuals over eight follows-ups was drawn from the Western Australian Pregnancy Cohort (Raine) Study. Trajectories of BMI from birth to adolescence using linear mixed model (LMM) analysis investigated the influence of age breastfeeding stopped and age other milk introduced (binomial 4-month cut-point). A sub-sample of LMM predicted BMI was used to determine BMI and age at nadir for early infant feeding groups. Results: Chi square analysis between early feeding and weight status (normal weight, overweight and obese) groups found a significant difference between age breastfeeding stopped (p Conclusions: Early infant feeding was important in the timing and BMI at adiposity rebound. The relationship between infant feeding and BMI remained up to age 14 years. Although confounding factors cannot be excluded, these findings support the importance of exclusive breastfeeding for longer than four months as a protective behaviour against the development of adolescent obesity

    Comparative Genomic Analysis of Chitinase and Chitinase-Like Genes in the African Malaria Mosquito (Anopheles gambiae)

    Get PDF
    Chitinase is an important enzyme responsible for chitin metabolism in a wide range of organisms including bacteria, yeasts and other fungi, nematodes and arthropods. However, current knowledge on chitinolytic enzymes, especially their structures, functions and regulation is very limited. In this study we have identified 20 chitinase and chitinase-like genes in the African malaria mosquito, Anopheles gambiae, through genome-wide searching and transcript profiling. We assigned these genes into eight different chitinase groupings (groups I–VIII). Domain analysis of their predicted proteins showed that all contained at least one catalytic domain. However, only seven (AgCht4, AgCht5-1, AgCht6, AgCht7, AgCht8, AgCht10 and AgCht23) displayed one or more chitin-binding domains. Analyses of stage- and tissue-specific gene expression revealed that most of these genes were expressed in larval stages. However, AgCht8 was mainly expressed in the pupal and adult stages. AgCht2 and AgCht12 were specifically expressed in the foregut, whereas AgCht13 was only expressed in the midgut. The high diversity and complexity of An. gambiae chitinase and chitinase-like genes suggest their diverse functions during different developmental stages and in different tissues of the insect. A comparative genomic analysis of these genes along with those present in Drosophila melanogaster, Tribolium castaneum and several other insect species led to a uniform classification and nomenclature of these genes. Our investigation also provided important information for conducting future studies on the functions of chitinase and chitinase-like genes in this important malaria vector and other species of arthropods

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Predicting a small molecule-kinase interaction map: A machine learning approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present a machine learning approach to the problem of protein ligand interaction prediction. We focus on a set of binding data obtained from 113 different protein kinases and 20 inhibitors. It was attained through ATP site-dependent binding competition assays and constitutes the first available dataset of this kind. We extract information about the investigated molecules from various data sources to obtain an informative set of features.</p> <p>Results</p> <p>A Support Vector Machine (SVM) as well as a decision tree algorithm (C5/See5) is used to learn models based on the available features which in turn can be used for the classification of new kinase-inhibitor pair test instances. We evaluate our approach using different feature sets and parameter settings for the employed classifiers. Moreover, the paper introduces a new way of evaluating predictions in such a setting, where different amounts of information about the binding partners can be assumed to be available for training. Results on an external test set are also provided.</p> <p>Conclusions</p> <p>In most of the cases, the presented approach clearly outperforms the baseline methods used for comparison. Experimental results indicate that the applied machine learning methods are able to detect a signal in the data and predict binding affinity to some extent. For SVMs, the binding prediction can be improved significantly by using features that describe the active site of a kinase. For C5, besides diversity in the feature set, alignment scores of conserved regions turned out to be very useful.</p
    corecore