996 research outputs found

    L2 reading rate and word length: The necessity of character-based measurement

    Get PDF
    Reading rate, usually measured in words per minute, is a common operationalization of reading fluency in second language (L2) research and pedagogy. However, the impact of word length is often not addressed. This paper presents two studies showing how the number of characters in a text influences L2 reading time, independent of word counts, within classroom-based activities for Japanese university English as Foreign Language students. In Study 1, students (N = 160) read two sets of graded texts manipulated to differ only in the total number of characters. The texts with more characters required significantly more time to read, with a small effect size. In Study 2, the average reading times for students (N = 27) throughout a semester-long timed reading course were strongly associated with text length as measured in characters, controlling for differences in word counts. Together these studies support the inclusion of character-based counting units when measuring L2 reading rate or reading amount

    The Counts of Dracula and Monte Cristo: Homonym Frequencies in Graded Readers

    Get PDF
    Graded readers are a great asset to learners acquiring the vocabulary of another language. Homonyms, on the other hand, are a recognized source of trouble for students with that same goal. Publishers of graded readers control the presentation of old and new words, but does this control extend to homonyms? Are only the word forms controlled for—in which case, the unrelated meanings of match (a pairing and a stick for starting fire) would together constitute two uses of the word? Or would these tally as separate words which, semantically and etymologically, they are? A comparison of a 4.2 million-word corpus of graded readers with previous research on the distributions of homonymic meanings in general English reveals that the meanings presented to learners are frequently quite different to those in general-purpose texts

    Analysis of ISS Plasma Interaction

    Get PDF
    To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data from several radar locations around the globe were used to assure consistency of the satellite data. PIM predictions for ISS charging made with this data correlated very well with FPP data, indicating that the general physics of spacecraft charging with high voltage solar arrays have been captured. The predictions also provided the probabilities of occurrences for ISS charging. These probabilities give a numerical measure of the number of times when the ISS will approach or exceed the vehicle plasma hazard conditions for each configuration. In this paper we shall present the interaction mechanisms between the ISS and the surrounding plasma and give an overview of the PIM components. PIM predictions are compared with available data followed by a discussion of the variability of plasma parameters and the conductive area on the ISS. The ISS PIM will be further tested and verified as data from the Floating Potential Measurement Unit become available, and construction of the ISS continues

    Bogomol'nyi Limit For Magnetic Vortices In Rotating Superconductor

    Full text link
    This work is the sequel of a previous investigation of stationary and cylindrically symmetric vortex configurations for simple models representing an incompressible non-relativistic superconductor in a rigidly rotating background. In the present paper, we carry out our analysis with a generalized Ginzburg-Landau description of the superconductor, which provides a prescription for the radial profile of the normal density within the vortex. Within this framework, it is shown that the Bogomol'nyi limit condition marking the boundary between type I and type II behavior is unaffected by the rotation of the background.Comment: 7 pages, uses RevTeX, submitted to Phys.Rev.

    High-performance epistasis detection in quantitative trait GWAS

    Get PDF
    epiSNP is a program for identifying pairwise single nucleotide polymorphism (SNP) interactions (epistasis) in quantitative-trait genome-wide association studies (GWAS). A parallel MPI version (EPISNPmpi) was created in 2008 to address this computationally expensive analysis on large data sets with many quantitative traits and SNP markers. However, the falling cost of genotyping has led to an explosion of large-scale GWAS data sets that challenge EPISNPmpi’s ability to compute results in a reasonable amount of time. Therefore, we optimized epiSNP for modern multi-core and highly parallel many-core processors to efficiently handle these large data sets. This paper describes the serial optimizations, dynamic load balancing using MPI-3 RMA operations, and shared-memory parallelization with OpenMP to further enhance load balancing and allow execution on the Intel Xeon Phi coprocessor (MIC). For a large GWAS data set, our optimizations provided a 38.43× speedup over EPISNPmpi on 126 nodes using 2 MICs on TACC’s Stampede Supercomputer. We also describe a Coarray Fortran (CAF) version that demonstrates the suitability of PGAS languages for problems with this computational pattern. We show that the Coarray version performs competitively with the MPI version on the NERSC Edison Cray XC30 supercomputer. Finally, the performance benefits of hyper-threading for this application on Edison (average 1.35× speedup) are demonstrated

    Characterizing the Temporal Evolution of Altered Cardiac Mechanics in Diet-Induced Obese Mice Using Cine DENSE CMR

    Get PDF
    Background Obesity and metabolic syndrome are associated with increased risk of cardiovascular disease. Research suggests that altered cardiac mechanics (i.e., reduced strains, torsion, and synchrony of contraction) are present in obesity; yet, the causes of this mechanical dysfunction and its relationship to other sequelae of obesity (e.g., hypertension and elevated blood glucose) are not well understood. We hypothesize that diet-induced obesity in mice leads to reductions in measures of left ventricular (LV) mechanics, which develop in acute response to the onset of hyperglycemia, hypertension, and ventricular remodeling. Methods Twenty 4-week-old C57BL/6J mice were randomized (n = 10 per group) to either a high-fat (60% kcal from fat) or sucrose-matched low-fat (10% kcal from fat) diet for 28 weeks. After 4 weeks and every 6 weeks thereafter, LV mechanics were quantified using cine displacement encoding with stimulated echoes (DENSE) on a 7T ClinScan MRI (Bruker, Ettlingen, Germany) with a 4-element phased array cardiac coil. Three short-axis and two long-axis slices were acquired with 13-20 frames per cardiac cycle. Semi-automated post-processing was performed using custom software in MATLAB (Mathworks, Natick, MA). Additionally, systolic blood pressure (via tail cuff measurement) and fasting blood glucose were assessed every 4 weeks on staggered schedules. Results Mice on the high-fat diet became obese relative to the low-fat controls (49.9 vs. 29.2 g, respectively, by week 28;). Fasting blood glucose was elevated in the high-fat group (202 vs. 112 mg/dL; p \u3c 0.05) starting from the earliest measurement (week 7 on diet), whereas significant differences in LV mass (88 vs. 79 mg) and systolic blood pressure (172 vs. 162 mmHg) developed much later (weeks 22 and 25 on diet, respectively). Significant reductions in peak LV radial (15%) and circumferential (8%) strains and reduced contractile synchrony were detected in the high-fat group for the first time in week 28. A 10% reduction in peak torsion was also observed at that time, but did not reach statistical significance (p = 0.075). There were no differences in LV cavity volumes or ejection fraction. Conclusions Diet-induced obesity in mice is associated with reduced left ventricular mechanics. This dysfunction develops long after the manifestation of hyperglycemia in this model, which suggests that chronic alterations in glucose/insulin levels and/or signaling may contribute more to cardiac contractile dysfunction than acute elevations. Late development of concentric ventricular hypertrophy and hypertension prior to suppressed cardiac mechanics also suggests an important role of these processes in the reduced ventricular function

    Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice

    Get PDF
    BACKGROUND: Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. METHODS: Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer\u27s analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. RESULTS: LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate). CONCLUSIONS: Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion

    Obesity Reduces Left Ventricular Strains, Torsion, and Synchrony in Mouse Models: A Cine Displacement Encoding with Stimulated Echoes (DENSE) Cardiovascular Magnetic Resonance Study

    Get PDF
    BACKGROUND: Obesity affects a third of adults in the US and results in an increased risk of cardiovascular mortality. While the mechanisms underlying this increased risk are not well understood, animal models of obesity have shown direct effects on the heart such as steatosis and fibrosis, which may affect cardiac function. However, the effect of obesity on cardiac function in animal models is not well-defined. We hypothesized that diet-induced obesity in mice reduces strain, torsion, and synchrony in the left ventricle (LV). METHODS: Ten 12-week-old C57BL/6 J mice were randomized to a high-fat or low-fat diet. After 5 months on the diet, mice were imaged with a 7 T ClinScan using a cine DENSE protocol. Three short-axis and two long-axis slices were acquired for quantification of strains, torsion and synchrony in the left ventricle. RESULTS: Left ventricular mass was increased by 15% (p = 0.032) with no change in volumes or ejection fraction. Subepicardial strain was lower in the obese mice with a 40% reduction in circumferential strain (p = 0.008) a 53% reduction in radial strain (p = 0.032) and a trend towards a 19% reduction in longitudinal strain (p = 0.056). By contrast, subendocardial strain was modestly reduced in the obese mice in the circumferential direction by 12% (p = 0.028), and no different in the radial (p = 0.690) or longitudinal (p = 0.602) directions. Peak torsion was reduced by 34% (p = 0.028). Synchrony of contraction was also reduced (p = 0.032) with a time delay in the septal-to-lateral direction. CONCLUSIONS: Diet-induced obesity reduces left ventricular strains and torsion in mice. Reductions in cardiac strain are mostly limited to the subepicardium, with relative preservation of function in the subendocardium. Diet-induced obesity also leads to reduced synchrony of contraction and hypertrophy in mouse models

    Left Ventricular Mechanical Dysfunction in Diet-Induced Obese Mice Is Exacerbated During Inotropic Stress: A Cine DENSE Cardiovascular Magnetic Resonance Study

    Get PDF
    BACKGROUND: Obesity is a risk factor for cardiovascular disease. There is evidence of impaired left ventricular (LV) function associated with obesity, which may relate to cardiovascular mortality, but some studies have reported no dysfunction. Ventricular function data are generally acquired under resting conditions, which could mask subtle differences and potentially contribute to these contradictory findings. Furthermore, abnormal ventricular mechanics (strains, strain rates, and torsion) may manifest prior to global changes in cardiac function (i.e., ejection fraction) and may therefore represent more sensitive markers of cardiovascular disease. This study evaluated LV mechanics under both resting and stress conditions with the hypothesis that the LV mechanical dysfunction associated with obesity is exacerbated with stress and manifested at earlier stages of disease compared to baseline. METHODS: C57BL/6J mice were randomized to a high-fat or control diet (60 %, 10 % kcal from fat, respectively) for varying time intervals (n = 7 - 10 subjects per group per time point, 100 total; 4 - 55 weeks on diet). LV mechanics were quantified under baseline (resting) and/or stress conditions (40 μg/kg/min continuous infusion of dobutamine) using cine displacement encoding with stimulated echoes (DENSE) with 7.4 ms temporal resolution on a 7 T Bruker ClinScan. Peak strain, systolic strain rates, and torsion were quantified. A linear mixed model was used with Benjamini-Hochberg adjustments for multiple comparisons. RESULTS: Reductions in LV peak longitudinal strain at baseline were first observed in the obese group after 42 weeks, with no differences in systolic strain rates or torsion. Conversely, reductions in longitudinal strain and circumferential and radial strain rates were seen under inotropic stress conditions after only 22 weeks on diet. Furthermore, stress cardiovascular magnetic resonance (CMR) evaluation revealed supranormal values of LV radial strain and torsion in the obese group early on diet, followed by later deficits. CONCLUSIONS: Differences in left ventricular mechanics in obese mice are exacerbated under stress conditions. Stress CMR demonstrated a broader array of mechanical dysfunction and revealed these differences at earlier time points. Thus, it may be important to evaluate cardiac function in the setting of obesity under stress conditions to fully elucidate the presence of ventricular dysfunction

    Simplified Post Processing of Cine DENSE Cardiovascular Magnetic Resonance for Quantification of Cardiac Mechanics

    Get PDF
    BACKGROUND: Cardiovascular magnetic resonance using displacement encoding with stimulated echoes (DENSE) is capable of assessing advanced measures of cardiac mechanics such as strain and torsion. A potential hurdle to widespread clinical adoption of DENSE is the time required to manually segment the myocardium during post-processing of the images. To overcome this hurdle, we proposed a radical approach in which only three contours per image slice are required for post-processing (instead of the typical 30-40 contours per image slice). We hypothesized that peak left ventricular circumferential, longitudinal and radial strains and torsion could be accurately quantified using this simplified analysis. METHODS AND RESULTS: We tested our hypothesis on a large multi-institutional dataset consisting of 541 DENSE image slices from 135 mice and 234 DENSE image slices from 62 humans. We compared measures of cardiac mechanics derived from the simplified post-processing to those derived from original post-processing utilizing the full set of 30-40 manually-defined contours per image slice. Accuracy was assessed with Bland-Altman limits of agreement and summarized with a modified coefficient of variation. The simplified technique showed high accuracy with all coefficients of variation less than 10% in humans and 6% in mice. The accuracy of the simplified technique was also superior to two previously published semi-automated analysis techniques for DENSE post-processing. CONCLUSIONS: Accurate measures of cardiac mechanics can be derived from DENSE cardiac magnetic resonance in both humans and mice using a simplified technique to reduce post-processing time by approximately 94%. These findings demonstrate that quantifying cardiac mechanics from DENSE data is simple enough to be integrated into the clinical workflow
    corecore