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Reproducibility of cine displacement encoding
with stimulated echoes (DENSE) cardiovascular
magnetic resonance for measuring left ventricular
strains, torsion, and synchrony in mice
Christopher M Haggerty1, Sage P Kramer1, Cassi M Binkley1, David K Powell2, Andrea C Mattingly1,
Richard Charnigo3, Frederick H Epstein4 and Brandon K Fornwalt1,2*

Abstract

Background: Advanced measures of cardiac function are increasingly important to clinical assessment due to their
superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for
quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-
processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test
and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated.
This represents a critical knowledge gap for both understanding the capabilities of this technique and for the
design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-
observer reproducibility for advanced measures of left ventricular (LV) function in mice.

Methods: Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were
imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15–20 frames per cardiac
cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain,
twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer
to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer’s
analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility.

Results: LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%,
and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist
angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal
gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of
strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures
(e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate).

Conclusions: Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left
ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial
twist angles are not reproducible and future studies should instead report torsion.
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Background
The ability to make advanced measurements of myocar-
dial function (e.g., strains and strain rates) from cardiac
imaging is a potentially valuable tool in clinical assess-
ment of ventricular function. These indices have been
shown to correlate strongly with left ventricular systolic
function and contractility [1-3] and predict cardiac mor-
tality [3-5]. Furthermore, abnormalities in such advanced
measures of cardiac function may precede global myo-
cardial dysfunction [6], which suggests they may provide
a useful early marker for diagnosing and treating disease.
Measuring strains with cardiovascular magnetic reson-

ance (CMR) has been accomplished through numerous
techniques including tissue tagging [7,8], phase contrast
velocity mapping [9,10], and displacement encoding with
stimulated echoes (DENSE) [11,12]. DENSE in particular
has the distinct advantage of encoding tissue displace-
ments into the signal phase, and thus provides for
straightforward strain calculation with high spatial reso-
lution. Therefore, DENSE has been used to assess myo-
cardial function and mechanics in both humans [13,14]
and mice [15,16].
A critical benchmark for the success and usefulness of

any measurement technique is its reproducibility; that is,
how much variation is observed between values mea-
sured both at different time points (inter-test) and by
different observers (inter-observer). The inter-test and
inter-observer reproducibility for quantification of ad-
vanced cardiac function in mice has not been evaluated,
which represents an important knowledge gap to address
for ensuring the future clinical and translational research
utility of the method. We hypothesized that cine DENSE
CMR would show excellent inter-test and inter-observer
reproducibility for advanced measures of left ventricular
(LV) function in mice. We tested this hypothesis in the
context of mouse models with both normal and abnormal
(obesity-induced dysfunction) ventricular function.

Methods
Mouse models
Nine 12-week-old C57BL/6 mice were randomized to
either a high fat diet ad libitum, with 60% of calories
from fat (Research Diets #D12492) or a low fat diet with
10% of calories from fat (Research Diets #D12450B).
Animals were housed in ventilated cages in a temperature-
controlled room with a 14:10 light:dark cycle and provided
with enrichment in the form of acrylic huts and nesting
material. All animal procedures conformed to Public
Health Service policies for humane care and use of
animals, and all procedures were approved by the institu-
tional animal care and use committee at the University of
Kentucky. Notably, differences in myocardial strains, tor-
sion, and synchrony between these groups have previously
been reported [17].

Animal preparation
Imaging was performed 5 months after starting the diet.
Animals were anesthetized with isoflurane using a preci-
sion vaporizer delivering 1.5-2.5% isoflurane in oxygen at
a rate of 1.0 L/min. Once anesthetized, three legs were
shaved for placement of cutaneous ECG electrodes re-
quired for cardiac gating. A diaphragm to sense breathing
was placed under the abdomen for respiratory gating in
order to minimize motion artifact. A rectal thermometer
was placed to monitor core temperature. During scanning,
all vital signs including heart rate, respiratory rate and core
temperature were continuously monitored with a fiber
optic system (SA Instruments, Inc, Stony Brook, NY).
Body temperature was maintained between 36 and 37
degrees Celsius with a heated water blanket.

CMR
CMR was performed on a 7-Tesla BrukerClinScan
system (Bruker, Ettlingen, Germany) equipped with a 4-
element phased array cardiac coil and a gradient system
with a maximum strength of 450 mT/m and a max-
imum slew rate of 4500 mT/m/s. Image acquisition has
been described in detail previously [11,18]. Briefly, the
CMR tissue tracking method known as cine Displace-
ment Encoding with Stimulated Echoes (DENSE) was
utilized. Immediately after an electrocardiogram R-wave
trigger detection, which marks the depolarization of the
ventricles and onset of contraction, a displacement en-
coding module consisting of radiofrequency and gradi-
ent pulses was applied, which stores position-encoded
longitudinal magnetization. This initial encoding was
followed by successive applications of a readout module,
consisting of a radiofrequency excitation pulse, a displace-
ment un-encoding gradient, and an interleaved spiral
k-space trajectory. This sequence creates 3 images: a
magnitude image and two phase images independently
encoded for ‘x’ and ‘y’ displacements, respectively (Figure 1).
A total of 15–20 frames per cardiac cycle using both car-
diac and respiratory gating were acquired with a repetition
time of 7.1 ms. Other relevant acquisition parameters
included: field of view = 32 mm, matrix = 128 × 128, slice
thickness = 1 mm, echo time = 0.67 ms, number of aver-
ages = 3, number of spiral interleaves = 36, and dis-
placement encoding frequency = 0.8 cycles/mm. Each
two-dimensional image acquisition took approximately
6–9 minutes depending on the heart rate (usually 400–
600 beats per minute) and respiratory rate (usually 90–
140 breaths per minute) of the animal.
We acquired 3 short-axis images and 2 long-axis

images for each mouse. The long-axis images consisted
of a standard apical 4-chamber view and a 2-chamber
view perpendicular to the 4-chamber view. The short-axis
images were planned perpendicular to the 4-chamber
long-axis image. Specifically, the apical and basal slice
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positions were placed at a distance 20% of the end-systolic
ventricular length above and below the mid-ventricle,
which itself was defined as 50% of the measured end-
systolic length.

Image analysis
The displacement-encoded phase images were used to
derive advanced quantitative measures of cardiac func-
tion offline using custom software written in MATLAB
(Mathworks, Inc., Natick, MA). The basic steps included
semi-automated motion-guided segmentation of the
myocardium from the blood pool and surrounding tissue,
phase unwrapping, and tissue tracking to derive the actual
displacement of each pixel throughout the cardiac cycle
[19,20]. User correction of the automated segmentation
could be performed as needed. The displacement vectors
were then decomposed into orthogonal directions with
respect to the LV, as shown in Figure 2A: radial, circum-
ferential and longitudinal. Global cardiac circumferen-
tial and radial strain curves were derived from averaging
the strain curves of each of the 16 standardized

segments of the left ventricle [21] (see Figure 2B for
example of circumferential strain curves for the 16
segments). In addition, the myocardium was automati-
cally divided into thirds (‘subendocardium’, ‘mid-wall’, and
‘subepicardium’) for individual evaluation of the trans-
mural layers. For long-axis data, the apical segments were
excluded from analysis.
The strains were used to quantify left ventricular

synchrony using the circumferential and radial uni-
formity ratio estimate indices (CURE and RURE) [22].
Twist was defined by the angle between radial lines
connecting the LV centroid on a given slice to the voxel
of interest between the time point of interest (e.g., end
systole) and end diastole [16]. A positive angle denotes
counter-clockwise rotation viewed from the standard
imaging perspective (apex/foot). Torsion was defined
as the difference in twist angle between the basal and
apical slices normalized by the long-axis epicardial
length of the left ventricle at end-diastole (average of
lengths measured on the 2-chamber and 4-chamber
images) [23].

Magnitude Image R−L encoding A−P encoding

Figure 1 Representative output from mid-ventricular short axis slice using the DENSE acquisition protocol. Three images are created: a
magnitude image (left), a phase image encoded in the ‘x’ or right-left (R-L) direction (middle) and a second phase image encoded in the ‘y’ or
anterior-posterior (A-P) direction (right).

Figure 2 Segmental analysis of strains in three orthogonal directions of the LV. A) Definition of strain components for a given section of
LV myocardium: radial (rr), circumferential (cc), and longitudinal (ll). Arrows denote bulk myocardial strain directions during LV contraction.
B) Representative circumferential strain vs. time curve over the cardiac cycle. Each curve represents one component of the standard 16 segment
LV model. Negative values of strain denote shortening with respect to the end diastolic baseline.
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Reproducibility assessment
Two different comparisons were sought: 1) Inter-test re-
producibility (i.e., the change in a given quantity through
separate, independent measurements on the same ani-
mal) and 2) inter-observer reproducibility (i.e., the
change in a given quantity through independent analyses
of a single measurement by multiple observers). For the
inter-test assessment, each of the 9 mice was imaged
with the same protocol on two different days spaced two
days apart and the post-processing was carried out by a
single user (#1). For the inter-observer test, a second
investigator (#2) repeated the post-processing analyses
for all 9 mice on the data set from the first day. For all
comparisons, reproducibility was assessed using a modi-
fied mean coefficient of variation (CoV), which compares
the measurement variability of the given variable, X, over
the N mice to its absolute magnitude, as follows:

CoV ¼
XN

i¼1
St:Dev: XObs:1 XObs:2ð Þi
� �

XN

i¼1
XObs:1 þ XObs:2ð Þ=2ð Þi

� ����
���

CoV results less than or equal to 20% were considered
reproducible.

Results
Strain and strain rate
The strain and strain rate results are summarized in
Tables 1 and 2, respectively. The inter-observer reproduci-
bility can be assessed by comparing the first two columns,
while the inter-test reproducibility data are in columns two
and three. Strains and strain rates in the radial, circumfe-
rential and longitudinal directions are reported with each
direction decomposed into endocardial, mid-myocardial,

and epicardial segments in addition to the ‘global’ average
value. Additionally, the strain rates are separated into
systolic and diastolic components. The radial direction
had both the largest magnitudes and standard deviations
in strains and strain rates, while the longitudinal and
circumferential values were similar in magnitude. He-
terogeneity in response across the myocardial layers was
also seen.
Figure 3 presents the inter-test (top) and inter-observer

(bottom) CoV for the LV strain results. In both cases, the
measures were highly reproducible with all CoVs ≤ 15%. In
general, the inter-observer variability was lower than
inter-test, while the circumferential strain was less variable
than the longitudinal or radial strains. Similarly, Figure 4
shows the CoVs for the LV strain rates. The inter-observer
reproducibility was again strong, particularly the diastolic
rates, with all CoVs ≤ 20%. For the inter-test comparisons,
the global averages were reproducible (with the possible
exception of longitudinal diastolic strain rate) but analyses

Table 1 Summary (mean ± standard deviation) of peak
myocardial strain results in the radial, circumferential,
and longitudinal directions

Observer 2,
Day 1

Observer 1,
Day 1

Observer 1,
Day 2

Peak radial
strain (%)

Endo 32 ± 6 35 ± 5 31 ± 6

Mid 36 ± 7 34 ± 5 33 ± 6

Epi 23 ± 10 21 ± 7 20 ± 4

Global 32 ± 6 31 ± 4 29 ± 4

Peak
circumferential

strain (%)

Endo −16 ± 2 −16 ± 1 −15 ± 1

Mid −11 ± 2 −12 ± 2 −11 ± 1

Epi −8 ± 2 −8 ± 2 −8 ± 1

Global −12 ± 2 −12 ± 2 −11 ± 1

Peak longitudinal
strain (%)

Endo −12 ± 1 −12 ± 1 −12 ± 1

Mid −11 ± 1 −11 ± 2 −11 ± 1

Epi −10 ± 1 −10 ± 1 −10 ± 1

Global −11 ± 1 −11 ± 1 −11 ± 1

Table 2 Summary (mean ± standard deviation) of peak
myocardial strain rate results

Systolic Observer
2, Day 1

Observer
1, Day 1

Observer
1, Day 2

Peak radial strain rate
(%/ms)

Endo 12 ± 2 12 ± 3 13 ± 3

Mid 12 ± 3 12 ± 3 12 ± 2

Epi 9 ± 2 9 ± 3 9 ± 2

Global 11 ± 2 10 ± 2 11 ± 2

Peak circumferential
strain rate (%/ms)

Endo −6 ± 1 −7 ± 1 −7 ± 1

Mid −5 ± < 1 −5 ± 1 −5 ± < 1

Epi −3 ± < 1 −3 ± < 1 −3 ± < 1

Global −5 ± < 1 −5 ± < 1 −5 ± < 1

Peak longitudinal
strain rate (%/ms)

Endo −6 ± 2 −5 ± 1 −5 ± 2

Mid −5 ± 1 −5 ± 1 −5 ± 1

Epi −4 ± 1 −4 ± 1 −5 ± 1

Global −5 ± 1 −5 ± 1 −5 ± 1

Diastolic Observer
2, Day 1

Observer
1, Day 1

Observer
1, Day 2

Peak radial strain rate
(%/ms)

Endo −12 ± 3 −13 ± 4 −12 ± 4

Mid −12 ± 4 −12 ± 3 −12 ± 5

Epi −9 ± 3 −8 ± 3 −8 ± 2

Global −11 ± 3 −11 ± 3 −10 ± 3

Peak circumferential
strain rate (%/ms)

Endo 6 ± 2 6 ± 1 6 ± 1

Mid 4 ± 1 4 ± 1 4 ± 1

Epi 3 ± < 1 3 ± 1 3 ± 1

Global 4 ± 1 4 ± 1 4 ± 1

Peak longitudinal
strain rate (%/ms)

Endo 5 ± 2 4 ± 1 5 ± 2

Mid 4 ± 1 4 ± 1 4 ± 2

Epi 4 ± 1 4 ± 1 4 ± 2

Global 4 ± 1 4 ± 1 4 ± 2
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Figure 3 Coefficients of variation for the inter-test (top) and inter-observer (bottom) analyses of LV strains. The data are broken down by
strain direction (either circumferential [‘Circumf’], longitudinal [‘Longitud’], or radial), and by location within the myocardium (endocardium [‘Endo’],
mid-myocardium [‘Mid’], epicardium [‘Epi’], or averaged across all layers [‘Global’]). Excellent reproducibility is seen in all cases with CoVs ≤ 15%.

Circumf Longitud Radial

5

10

15

20

25

30
Inter−Test Systolic LV Strain Rates

In
te

r−
te

st
 C

o
ef

fi
ci

en
t 

o
f 

V
ar

ia
ti

o
n

 (
%

)

Endo
Mid
Epi
Global

Circumf Longitud Radial

5

10

15

20

25

30
Inter−Test Diastolic LV Strain Rates

In
te

r−
te

st
 C

o
ef

fi
ci

en
t 

o
f 

V
ar

ia
ti

o
n

 (
%

)

Endo
Mid
Epi
Global

Circumf Longitud Radial

5

10

15

20

25

30

In
te

r−
o

b
se

rv
er

 C
o

ef
fi

ci
en

t 
o

f 
V

ar
ia

ti
o

n
 (

%
) Inter−Observer Systolic LV Strain Rates

Endo
Mid
Epi
Global

Circumf Longitud Radial

5

10

15

20

25

30
Inter−Observer Diastolic LV Strain Rates

In
te

r−
o

b
se

rv
er

 C
o

ef
fi

ci
en

t 
o

f 
V

ar
ia

ti
o

n
 (

%
)

Endo
Mid
Epi
Global

Figure 4 Coefficients of variation for the inter-test (top row) and inter-observer (bottom row) analyses of LV strain rates during both
systole (left column) and diastole (right column). The data are broken down by strain direction (either circumferential [‘Circumf’], longitudinal
[‘Longitud’], or radial), and bytransmural location (endocardium [‘Endo’], mid-myocardium [‘Mid’], epicardium [‘Epi’], or averaged across all layers
[‘Global’]). The data, particularly for Global averages, show that these measures are reproducible (CoVs ≤ 20%), with the exception of the inter-test
diastolic longitudinal strain rate.
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of individual transmural layers were more variable,
particularly in the radial and longitudinal directions
(CoV > 20%).

Twist angles and torsion
Table 3 provides a summary of the peak magnitudes and
rates of myocardial twist and torsion. The twist data are
reported for three short axis slices positioned at the
apex, mid-ventricle, and base. As expected, the direction
of the myocardial twist angle changed among these
slices, going from a large positive twist at the apex, to
near 0 in the mid-ventricle, and to a smaller (as com-
pared to the apical magnitude) negative twist at the base
during systole.
Table 3 also lists the inter-test and inter-observer CoV

results for each measure showing that, while the inter-
observer reproducibility of the LV twist angles and rates
was borderline acceptable (≤ 24%), the inter-test results
were poor, especially for the mid-ventricular slice (CoV
> 500% in LV twist at end systole). Figure 5 shows the
Bland-Altman plots for the end systolic twist data on
each of the short axis slices. In each case, the 95% limits
of agreement were large compared to the mean twist
angles measured, particularly for the mid-ventricular
slice, which had values close to 0°.
Peak torsion was highly reproducible: CoV = 12% and

5% for inter-test and inter-observer, respectively. However,
peak torsion rates were not reproducible on an inter-test
basis: CoV = 22% and 25% for systolic and diastolic results,
respectively.

Synchrony
Table 4 summarizes the results for the CURE and RURE
indices of synchrony. In all cases, the reproducibility was
excellent (CoV < 5%), particularly for CURE.

Reproducibility of obese vs. normal weight mice
To characterize the potential influence that mouse obesity
had on the reproducibility data, Table 5 compares the
CoV between mouse groups for selected function mea-
sures. No large or systematic differences in reproducibility
were observed between groups.

Discussion
We acquired and analyzed DENSE CMR data from
normal and obese C57BL/6 mice on multiple days and
using multiple observers to quantify the inter-test and
inter-observer reproducibility characteristics of advanced
measures of cardiac function (myocardial strains, twist
angles, torsion, and synchrony). Our major findings are:
1) inter-observer reproducibility was generally good for
all observed quantities; 2) inter-test reproducibility was
also good for LV strains, torsion, and synchrony, but not
for myocardial twist angles; 3) reproducibility of peak
values was generally better than that of the corresponding
peak rates (e.g., peak strain was more reproducible than
the peak strain rate). Future studies should consider and
utilize these findings in selecting analytical end points of
cross-sectional or serial analyses using similar methods,
particularly with respect to twist angles vs. torsion.

Twist angles vs. torsion
Despite the fact that twist and torsion are both fundamen-
tally measuring the angular myocardial displacement, we
found that reproducibility for torsion (length normalized
difference in twist between the apical and basal slices) was
better than that of the twist alone. These results are con-
sistent with a recent reproducibility study of CMR tagging
in humans [24]. Additionally, Lorenz et al. previously
reported the reproducibility of LV twist as measured by
MR tagging, and found large (2.1 ± 1.6°) mean inter-study
differences in three human volunteers (with reported mea-
sures ranging from -6° - 14°) [25]. As seen in Table 3, there

Table 3 Magnitudes and rates (mean ± standard deviation) of myocardial twist and torsion

Obs. 2, Day 1 Obs. 1, Day 1 Obs. 1, Day 2 Inter-test CoV (%) Inter-Obs CoV (%)

End systolic twist (°) Basal −1.9 ± 1.3 −2.2 ± 1.4 −2.7 ± 1.1 34 13

Mid 0.5 ± 1.7 0.5 ± 1.8 −0.1 ± 1 547 24

Apical 4.6 ± 2.6 4.5 ± 2.4 3.7 ± 1.3 34 6

Peak systolic twist rate (°/ms) Basal −90 ± 30 −100 ± 30 −130 ± 30 26 8

Mid 120 ± 70 120 ± 70 130 ± 50 32 6

Apical 180 ± 160 170 ± 60 190 ± 40 20 4

Peak diastolic twist rate (°/ms) Basal 50 ± 50 60 ± 50 70 ± 80 82 17

Mid −100 ± 40 −100 ± 40 −70 ± 40 35 7

Apical −160 ± 40 −150 ± 40 −160 ± 50 30 5

Peak torsion (°/cm) 7.7 ± 2.0 7.9 ± 1.8 7.7 ± 1.1 12 5

Peak systolic torsion rate (°/cm/ms) 240 ± 40 250 ± 40 270 ± 80 22 6

Peak diastolic torsion rate (°/cm/ms) −200 ± 70 −210 ± 90 −230 ± 80 25 10
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is a large gradient in twist angles along the longitudinal
length of the ventricle, so a small difference in slice
position could yield different results, which limited the
inter-test reproducibility. This observation is particularly
true for the mid-ventricular slice, in the transition zone
between clockwise and counter-clockwise rotation, where
even small absolute differences can yield large percentage
errors. By calculating this gradient rather than isolated
twist angles, the variation in torsion is reduced, making
that the preferred quantity to measure over twist. How-
ever, there are two critical features that are worth noting:
1) particular care was taken in this protocol in placing
the short axis slices with respect to the ventricle and

each other, which likely optimized the repeatability; and
2) torsion may or may not be similarly sensitive to slice
positioning decisions depending on the characteristics
of the twist gradient. At least one study has suggested
that torsion is constant along the LV (i.e., the twist
gradient is linear) [26], but further research, including
standardization of torsion calculation methods, is needed
to confirm these findings.

Radial strain
Previous reports using feature tracking or tagging have
demonstrated weaknesses in the reproducibility of radial
strains [27,28], likely owing to limited spatial resolution
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Figure 5 Bland-Altman plots of the inter-test differences in end systolic twist angles at the ventricular base (left), mid-ventricle
(middle), and apex (right). In all cases, the limits of agreement (± 2 standard deviation lines) are large compared to the mean values being
measured, which translated into poor CoVs (listed at the top of each plot). Because of the small twist angles at the mid-ventricular slice, this
effect is particularly pronounced (CoV = 547%).

Table 4 Measures (mean ± standard deviation) of ventricular synchrony

Observer 2, Day 1 Observer 1, Day 1 Observer 1, Day 2 Inter-test CoV (%) Inter-Obs CoV (%)

CURE Total 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.02 1 1

Systolic 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.02 1 1

Diastolic 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.02 1 1

RURE Total 0.92 ± 0.06 0.93 ± 0.03 0.92 ± 0.06 3 3

Systolic 0.93 ± 0.05 0.94 ± 0.03 0.94 ± 0.05 3 2

Diastolic 0.91 ± 0.07 0.92 ± 0.04 0.90 ± 0.08 4 4

Haggerty et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:71 Page 7 of 10
http://jcmr-online.com/content/15/1/71



and small numbers of pixels in the radial direction. Our
finding that radial strains were the least reproducible
compared to circumferential and longitudinal strains
was therefore expected. However, the values obtained
with DENSE (CoVs ≤ 15%) represent a substantial im-
provement in the reproducibility of radial strain. This
improvement reflects the superiority of spatial resolution
(e.g., more pixels in the radial dimension) and measure-
ment accuracy of DENSE compared to feature tracking
or MR tagging.

Peak values vs. rates of change
In general, the CoVs for peak values were better than the
respective measures of rates of change with respect to
time. For example, comparing Figures 3 and 4 reveals that
the peak strain coefficients were generally lower than the
peak strain rate coefficients, particularly for the inter-test
comparison. This is not to say that peak strain rates are
not reproducible, but instead reflects the fact that estimat-
ing a derivative from an inherently noisy measurement
will tend to amplify the noise in the signal [29,30].

User influence on results
While the objective of this study was to characterize the
reproducibility of DENSE measurements, there are im-
portant influences that the users have on the results of
these measures that should be noted. First, slice position-
ing during data acquisition has a primary effect, as was
particularly noted with regard to twist angle measures.
Potential differences in slice placement and angle with
respect to the long-axis may have contributed to some
variance in the inter-test measures. However, inter-test
results were favorable despite this potential influence, so
future studies should use similarly rigorous and repeatable
protocols for slice positioning and placement to avoid
introducing additional uncertainty or errors.
A second source of user influence is the image segmen-

tation, which was the primary motivation for quantifying
inter-observer reproducibility. Our results indicate that

DENSE is highly reproducible on an inter-observer
basis as evidenced by the fact that (with the exception
of mid-ventricle end systolic twist) all inter-observer
CoVs were ≤ 20%. While this finding is a major strength
of the study, it is important to note that the agreement
was likely significantly strengthened by the use of the
motion-guided segmentation algorithm used for the
post-processing step [20]. In this scheme, the user
manually defines initial segmentation contours on one
of the phases that are propagated and appropriately
moved to fit the borders of the rest of the cine images
based on the measured displacement phase data. Fine
adjustments can be made to the automated contours,
but minimal changes are generally required. In the
validation of this procedure presented by Spottiswoode
et al. it was found that this motion-guided procedure
had the potential to reduce segmentation errors below
the limits of inter-observer reproducibility [20]. So
while the present results were not completely devoid of
observer-related differences, repeating the analysis with
completely manual segmentation would likely have
made the results less reproducible.

Use of mouse obesity model
Although a direct comparison of normal function and
obesity-mediated ventricular dysfunction was not a focus
of this study, the inclusion of the obese mice in the study
design was notable and important for several reasons.
Even though Table 5 indicates that there were not signifi-
cant differences in reproducibility of function measures
between groups, the inclusion of two different function
groups in the study was important to avoid a homogenous
and thus easily reproducible data set. Furthermore, repro-
ducing ‘disease’ function in mice is typically of greater
importance and interest than ‘normal’ function. In that
sense, obese mice offered a good disease model for the
present work since they are known to have 1) cardiac re-
modeling and hypertrophy [31], 2) dysfunction in many of
the metrics we measured [17] and 3) are theoretically
more difficult to image due to problems with fat artifacts
and generally poorer health/tolerance of anesthesia.

Study limitations
We have demonstrated reproducibility of DENSE using a
mouse model of LV function, and cannot directly extrapo-
late these results to comment on the reproducibility of
DENSE in humans. Given the potential value of DENSE in
clinical ventricular assessment, repeating this assessment
in humans therefore represents a worthwhile exercise.
However, mouse models of ventricular function are exten-
sively used for basic science and translational studies into
cardiac disease, so demonstrating the reproducibility of
DENSE in this context is an important contribution.

Table 5 Differences in CoV (%) between obese and normal
weight mice

Obese mice
(n = 4)

Normal weight mice
(n = 5)

Peak radial strain 12 8

Peak circumferential strain 4 7

Peak longitudinal strain 9 7

End Systolic basal twist angle 35 32

End Systolic apical twist
angle

43 32

End Systolic mid-ventricular
twist angle

336 218

Peak torsion 8 15
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We did not utilize a fat suppression technique during
image acquisition in this study. Future studies in obese
mice may benefit from fat suppression to improve image
quality. However, the overall quality of the images was
extremely good in both the obese and normal mice
(Figure 1).
We did not directly quantify the intra-observer repro-

ducibility from a single dataset. Doing so could provide
additional insights into the influence of the motion-
guided segmentation on the observed agreement between
observers. However, since inter-test reproducibility was
found to be uniformly lower than inter-observer, and
intra-observer reproducibility would be, at worst, no less
than inter-observer, it is clear that the inter-test repro-
ducibility is the limiting factor in the overall reproduci-
bility of DENSE.

Conclusions
Cine DENSE CMR is a highly reproducible technique for
the quantification of advanced measures of left ventricular
function, including strains, torsion, and synchrony, in
mice. Radial strain was generally less reproducible than
circumferential strain, but the reproducibility of radial
strain with DENSE was far superior to previous results
reported using other techniques. Quantification of peak
values was more reproducible than the associated rates of
change. Myocardial twist angles are not reproducible,
likely because of the high sensitivity to slice placement
within the large longitudinal twist gradient that exists
within the left ventricle. However, we found that torsion is
reproducible, so future studies measuring myocardial twist
should instead quantify torsion. These findings provide
strong support for the use of these DENSE-derived mea-
sures of advanced cardiac function to identify early surro-
gates for dysfunction and disease and to further our
understanding of mouse models of disease in translational
research.
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