8 research outputs found

    Kajian Emisi Partikulat dan Gas dari suatu Pertambangan Nikel di Halmahera Tengah

    Get PDF
    Nikel merupakan jenis logam yang sangat penting untuk infrastruktur modern, sehingga pencarian deposit nikel terus dilakukan untuk memenuhi kebutuhan nikel di dunia. Indonesia merupakan negara dengan deposit nikel yang sangat besar, yaitu 16.200 kt nikel. Salah satu lokasi di Indonesia yang memiliki kandungan nikel adalah Halmahera Tengah. Bijih lateric yang mengandung nikel diangkat dari dalam bumi untuk diolah dan dihasilkan bijih nikel. Keberadaan pertambangan nikel memiliki berbagai dampak negatif terhadap lingkungan, salah satunya adalah penurunan kualitas udara akibat peningkatan konsentrasi pencemar udara. Berbagai jenis pencemar diemisikan dari kegiatan pertambangan, diantaranya adalah partikulat, NOx, SO2, SO3+H2SO4, debu nikel, dan H2S. Tingkat konstribusi pertambangan nikel terhadap pencemaran udara dapat dilihat dengan menghitung laju emisi dari kegiatan operasional pertambangan. Laju emisi dari pertambangan nikel dapat diperoleh melalui invetarisasi emisi. Kegiatan dan proses di pertambangan nikel yang berpotensi menjadi sumber emisi diidentifikasi terlebih dahulu dalam tahap pertama inventarisasi emisi. Selanjutnya, perhitungan emisi dilakukan berdasarkan ketersediaan data yang diperoleh. Faktor emisi yang dipilih dalam perhitungan emisi mempertimbangkan ketersediaan data. Emisi dihitung dengan mengalikan faktor emisi dengan data aktifitas. Berdasarkan hasil inventarisasi emisi, diketahui bahwa pencemar yang paling banyak dihasilkan oleh pertambangan nikel adalah partikulat dengan jumlah 35.173,96 ton. Sumber utama partikulat adalah pertambangan bijih dengan kontribusi sebesar 83%. Sementara itu, gas pencemar yang paling banyak diemisikan dari pertambangan nikel adalah SO2 dengan jumlah 8.392,61 ton. Sumber utama gas SO2 adalah pabrik asam dengan kontribusi sebesar 72%

    Potensi Mitigasi Emisi Gas Rumah Kaca dari Kegiatan Eksplorasi dan Produksi Minyak dan Gas Bumi di PT. Xyz

    Full text link
    The activity of exploration and production in oil and gas industry is significant greenhouse gas (GHG) emission source. PT. XYZ is one of upstream oil and gas industry in Indonesia and it have large crude oil and gas potential with it reserves that not manage yet. Therefore, GHG emission potential from the activity of exploration and production in PT. XYZ is very large. This study is done for estimate GHG emission reduction potential in PT. XYZ from various activities. Emission inventory is the first step to estimate GHG released to atmosphere. Method of estimation use the method developed by American Petroleum Institute (API). This study considers three types of mitigation measures options, including technical options (scenario 1), behavior option (scenario 2), and policy option (scenario 3). Based on emission inventory, flare and oil storage tank are primary source of GHG emissions in PT. XYZ. Scenario 1 prefers control of GHG emissions in flare and storage tank as primary emission source. While others scenario prefers to control GHG emission from transportation sector. Scenario 1 has potential to reduce emissions by 48.3 %. While scenario 2, and 3 in sequences have potential to reduce emissions by 0.15%, and 0.52%. Emissions flare and oil storage tank can be reduced through the installation of flaring gas recovery unit and vapor recovery unit. Both are effective and efficient in reducing GHG emissions in PT. XYZ. In addition, all mitigation measures of transportation sector provide benefits even though the amount of GHG that can be reduced is not significant

    An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography : Implications for aerosol pH estimate

    Get PDF
    Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an intercomparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl-, SO2-4, NO-3, NHC4 and KC. However, F-, Mg2C and Ca2C were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of nonrefractory SO2-4, NO-3 and NHC4 generally correlated very well with the filter-analysis-based data in our study, but the absolute concentrations differ by up to 42 %. Cl-from the two methods are correlated, but the concentration differ by more than a factor of 3. The analyses of certified reference materials (CRMs) generally showed a good detection accuracy (DA) of all ions in all the labs, the majority of which ranged between 90 % and 110 %. The DA was also used to correct the ion concentrations to showcase the importance of using CRMs for calibration check and quality control. Better agreements were found for Cl-, SO2-4, NO-3, NHC4 and KC across the labs after their concentrations were corrected with DA; the coefficient of variation (CV) of Cl-, SO2-4, NO-3, NHC4 and KC decreased by 1.7 %, 3.4 %, 3.4 %, 1.2 % and 2.6 %, respectively, after DA correction. We found that the ratio of anion to cation equivalent concentrations (AE/CE) and ion balance (anions-cations) are not good indicators for aerosol acidity estimates, as the results in different labs did not agree well with each other. In situ aerosol pH calculated from the ISORROPIA II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA II model is more consistent

    Kajian Emisi Partikulat Dan Gas Dari Suatu Pertambangan Nikel Di Halmahera Tengah

    Get PDF
    ABSTRAK Nikel merupakan jenis logam yang sangat penting untuk infrastruktur modern, sehingga pencarian deposit nikel terus dilakukan untuk memenuhi kebutuhan nikel di dunia. Indonesia merupakan negara dengan deposit nikel yang sangat besar, yaitu 16.200 kt nikel. Salah satu lokasi di Indonesia yang memiliki kandungan nikel adalah Halmahera Tengah. Bijih lateric yang mengandung nikel diangkat dari dalam bumi untuk diolah dan dihasilkan bijih nikel. Keberadaan pertambangan nikel memiliki berbagai dampak negatif terhadap lingkungan, salah satunya adalah penurunan kualitas udara akibat peningkatan konsentrasi pencemar udara. Berbagai jenis pencemar diemisikan dari kegiatan pertambangan, diantaranya adalah partikulat, NOx, SO2, SO3+H2SO4, debu nikel, dan H2S. Tingkat konstribusi pertambangan nikel terhadap pencemaran udara dapat dilihat dengan menghitung laju emisi dari kegiatan operasional pertambangan. Laju emisi dari pertambangan nikel dapat diperoleh melalui invetarisasi emisi. Kegiatan dan proses di pertambangan nikel yang berpotensi menjadi sumber emisi diidentifikasi terlebih dahulu dalam tahap pertama inventarisasi emisi. Selanjutnya, perhitungan emisi dilakukan berdasarkan ketersediaan data yang diperoleh. Faktor emisi yang dipilih dalam perhitungan emisi mempertimbangkan ketersediaan data. Emisi dihitung dengan mengalikan faktor emisi dengan data aktifitas. Berdasarkan hasil inventarisasi emisi, diketahui bahwa pencemar yang paling banyak dihasilkan oleh pertambangan nikel adalah partikulat dengan jumlah 35.173,96 ton. Sumber utama partikulat adalah pertambangan bijih dengan kontribusi sebesar 83%. Sementara itu, gas pencemar yang paling banyak diemisikan dari pertambangan nikel adalah SO2 dengan jumlah 8.392,61 ton. Sumber utama gas SO2 adalah pabrik asam dengan kontribusi sebesar 72%. Kata Kunci: inventarisasi emisi, pertambangan nikel, emisi gas, emisi partikulat   ABSTRACT Nickel is one kind of a very important metal used for modern infrastructure, so the exploration of nickel deposits conducted continuesly to meet the needs of nickel around the world. Indonesia is a country with very large nickel deposits, ie 16,200 kt of nickel. One of the locations in Indonesia which has a nickel content is Central Halmahera. Lateric bijih containing nickel was mined from the earth to be processed and produced nickel bijih. Nickel mining has many negative environment impacts, one of them is air quality decrease due to increased concentration of air pollutants. Various types of pollutants are emitted from mining activities, such as particulates, NOx, SO2, SO3+H2SO4, nickel dust, and H2S. The contribution of air pollution from nickel mining can be found by estimate the emissions rate from mining operations. Emission rate of the nickel mining can be obtained through emission inventory. The emission source of the activities and processes in nickel mining has to be identified first in the first stages of emission inventory. Furthermore, the estimation of emissions is conducted based on the availability of obtained data. The chosen emission factor in the estimation of emissions considers the availability of data. Emissions are calculated by multiplying the emission factor with activity data. Based on the result of emission inventory, the most pollutants emitted from nickel mining is particulate. Total amount of particulate emission is 35,173.96 tonnes. Main source of particulate is ore mining with contribution of 83%. Meanwhile, the most emitted gas from nickel mining is SO2 with the amount of 8,392.61 tons.Main source of SO2 is acid plant with contribution of 72%. Keywords: emission inventory, nickel mining, gas emission, particulate emissio

    Evaluasi Perencanaan Sistem Penyaluran Drainase di Kelurahan Jurumudi Kecamatan Benda Kota Tangerang

    Get PDF
    AbstrakBerdasarkan Peraturan Daerah Kota Tangerang nomor 6 Tahun 2012 Tentang RTRW, Kelurahan Jurumudi termasuk dalam kawasan rawan banjir. Terdapat dua titik banjir yaitu Jalan Permata Bandara dan Jalan Pergudangan. Evaluasi dilakukan dengan membandingan dimensi saluran eksisting dan rencana. Tahapan perencanaan meliputi analisis CHHM dengan Metode Gumbel, Log Pearson III, dan Iwai Kedoya. Analisis intensitas hujan dilakukan dengan Metode Van Breen, Bell-Tanimoto, dan Hasper der Weduwen melalui pendekatan matematis persamaan Talbot, Sherman, dan Ishiguro. Perhitungan debit rencana dilakukan dengan metode rasional. Perhitungan dimensi saluran dilakukan berdasarkan persamaan Manning. Hasil dari perencanaan dimensi rencana yaitu 50x30 cm – 240x80 cm. Hasil evaluasi menunjukkan bahwa saluran pada Jalan Permata Bandara dan Jalan Pergudangan tidak memadai karena saluran drainase eksiting kurang dari rencana.Kata kunci: Banjir, Dimensi Saluran, Kelurahan JurumudiAbstractAccording to Tangerang City Regional Regulation number 6 of 2012 about Regional Spatial Planning, Kelurahan Jurumudi is categorized as flood-prone areas. There are two flooding points which are Permata Bandara Street and Pergudangan Street. Evaluation is done by comparing the existing dimensions and dimensions of planning results. The steps include Flood Frequency Analysis with Gumbel, Log Pearson III, and Iwai Kedoya methods. Rain intensity analysis is carried out by the Van Breen, Bell-Tanimoto, and Hasper der Weduwen methods through a mathematical approach of Talbot, Sherman, and Ishiguro equations. Flowrate calculation plan is done with rational method. Calculation of channel dimensions is done based on the Manning equation. The planning result shows 50x30 cm – 240x80 cm of dimensions. The evaluation result shows that the channels on Permata Bandara Street and Pergudangan Street are inadequate because the existing drainage channels are less than what has been planned.Kata kunci: Flood, Channels Dimension, Kelurahan Jurumud

    Analisis Sumber Air Baku untuk Memenuhi Kebutuhan Air Rusunawa Giriasih di Kecamatan Batujajar Kabupaten Bandung Barat

    Full text link
    Administratively, Giriasih Rusunawa located at Jalan Griya Asri Permai, Kampung Babakan RT 01 and 02 RW 18 Kampung Babakan, Giriasih Village, Batujajar Sub-District, West Bandung Regency, is in a difficult area for clean water. This study aims to determine the alternative sources of raw water that will be used to meet water needs in Rusunawa. Alternative raw water sources, namely groundwater, surface and rain. The method used by comparing water quality with quality standards. The parameters tested consisted of physical, chemical, and microbiological parameters. The quality monitored is compared to the quality standard based on Government Regulation Number 82 of 2001 Class I concerning Management of Water Quality and Water Pollution Control and PerMenKes No. 492 of 2010 concerning Drinking Water Quality Requirements. Based on the results of analysis of raw water sources, surface water is very possible to be used as a source of water to meet the needs of water in flat from all aspects. Quantity aspect, Saguling Reservoir guarantees continuous availability of raw water, which is 4,000 l / sec and can still be developed up to 5,000 l / sec. Parameters that do not meet quality standards on surface water are: BOD, COD, Phosphate and Manganese. Based on the results of the calculation of water requirements of 3 l / sec to serve the water needs in the flat

    Preliminary Estimation On Air Pollution Load Over Bogor City Towards Development Of Clean Air Action Plan

    Full text link
    Emission inventory (EI) data are crucial to provide source apportionment and relative strength of various air pollutant sources in a city. The process of EI compilation can be either bottom-up or top-down, which depends on data availability and other resources. For a city like Bogor, known as a buffer zone of the capital of the Republic of Indonesia, these EI data are now available only for greenhouse gases (GHGs) but not for the air pollutants. Therefore, a top-down EI was designed and implemented for the city in the base year of 2016. Note that the sources of activity data were compiled from the previously arranged GHGs EI database as well as some other data gathered from the local authority. We adopted the EI framework of the Atmospheric Brown Cloud Emission Inventory Manual spreadsheet for the compilation. We included SO2, CO, NO2, PM10, PM2.5, NMVOC, and PM components (black carbon and organic carbon). Point sources, area sources, as well as mobile sources, were considered in the emission estimation. The latter species were included as they are known as strong short-lived climate-forcing pollutants (SLCPs). On-road transport contributed significantly to SO2, NMVOC, and PM2.5, with a portion of 60-86% of the total emission. Industrial combustion sources dominated the shares to the total emissions of NOx (91%) and CO (92%). Based on this baseline information, we then proposed the source wise clean air action plan for the city in order to reduce the emission. A more accurate and up to date EI database should be done through a survey to get local representative activity data and to be compiled on a regular basis

    Understanding sources and drivers of size-resolved aerosol in the High Arctic islands of Svalbard using a receptor model coupled with machine learning

    Get PDF
    Atmospheric aerosols are important drivers of Arctic climate change through aerosol–cloud–climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 μm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.Natural Environment Research Council (NERC): NE/S00579X/
    corecore