73 research outputs found

    Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins

    No full text
    The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3? splice site (3?ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3?ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3?UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPER?. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing

    Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex

    No full text
    Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression

    Antisense Oligonucleotides Modulating Activation of a Nonsense-Mediated RNA Decay Switch Exon in the ATM Gene

    Get PDF
    ATM (ataxia-telangiectasia, mutated) is an important cancer susceptibility gene that encodes a key apical kin ase in the DNA damage response pathway. ATM mutations in the germ line result in ataxia-telangiectasia (A-T), a rare genetic syndrome associated with hypersensitivity to double-strand DNA breaks and predisposition to lymphoid malignancies. ATM expression is limited by a tightly regulated nonsense-mediated RNA decay (NMD) switch exon (termed NSE) located in intron 28. In this study, we identify antisense oligonucleotides that modulate NSE inclusion in mature transcripts by systematically targeting the entire 3.1-kb-long intron. Their identification was assisted by a segmental deletion analysis of transposed elements, revealing NSE repression upon removal of a distant antisense Alu and NSE activation upon elimination of a long terminal repeat transposon MER51A. Efficient NSE repression was achieved by delivering optimized splice-switching oligonucleotides to embryonic and lymphoblastoid cells using chitosan-based nanoparticles. Together, these results provide a basis for possible sequence-specific radiosensitization of cancer cells, highlight the power of intronic antisense oligonucleotides to modify gene expression, and demonstrate transposon-mediated regulation of NSEs.The authors wish to thank Professor Steven Marsh (UCL and the Anthony Nolan Trust) for a generous gift of the VAVY cell line. This work was funded by Bloodwise (grant 12060 to I.V. and N.C.P.C), Santa Casa da Misericordia de Lisboa—Premio Melo e Castro (grant MC-1068-2015 to A.P.P.), and Fundacão para a Ciência e Tecnologia (grant SFRH/BPD/108738/2015 to P.M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways

    No full text
    The selection of 3' splice sites (3?ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3?ss. Pre-mRNA molecules with two alternative 3?ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5? and 3? sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 3

    A functional PTPN22 polymorphism associated with several autoimmune diseases is not associated with IgA deficiency in the Spanish population

    Get PDF
    BACKGROUND: The 1858C/T SNP of the PTPN22 gene has been associated with many autoimmune diseases, suggesting the existence of an inflammatory process common to all of them. We studied the association of that polymorphism with immunoglobulin A deficiency (IgAD) following a double approach: a case-control and a TDT study. METHODS: A total of 259 IgAD patients and 455 unrelated matched controls, and 128 families were used for each approach. Comparisons were performed using Chi-Square tests or Fisher's exact test when necessary. RESULTS: No association between the PTPN22 1858C/T SNP and IgA deficiency was found in any case (allelic frequencies 8% vs. 6% in patients and controls, respectively, OR= 1.14 (0.72–1.79), p= 0.56; TDT p = 0.08). CONCLUSION: The result obtained seems to reinforce the consideration of IgA deficiency as a primary immunodeficiency rather than an autoimmune disease

    A study of association between common variation in the growth hormone-chorionic somatomammotropin hormone gene cluster and adult fasting insulin in a UK Caucasian population

    Get PDF
    BACKGROUND: Reduced growth during infancy is associated with adult insulin resistance. In a UK Caucasian cohort, the CSH1.01 microsatellite polymorphism in the growth hormone-chorionic somatomammotropin hormone gene cluster was recently associated with increases in adult fasting insulin of approximately 23 pmol/l for TT homozygote males compared to D1D1 or D2D2 homozygotes (P = 0.001 and 0.009; n = 206 and 92, respectively), but not for females. TT males additionally had a 547-g lower weight at 1 year (n = 270; P = 0.008) than D2D2 males. We sought to replicate these data in healthy UK Caucasian subjects. We genotyped 1396 subjects (fathers, mothers and children) from a consecutive birth study for the CSH1.01 marker and analysed genotypes for association with 1-year weight in boys and fasting insulin in fathers. RESULTS: We found no evidence for association of CSH1.01 genotype with adult male fasting insulin concentrations (TT/D1D1 P = 0.38; TT/D2D2 P = 0.18) or weight at 1 year in boys (TT/D1D1 P = 0.76; TT/D2D2 P = 0.85). For fasting insulin, our data can exclude the previously observed effect sizes as the 95 % confidence intervals for the differences observed in our study exclude increases in fasting insulin of 9.0 and 12.6 pmol/l for TT relative to D1D1 and D2D2 homozygotes, respectively. Whilst we have fewer data on boys' 1-year weight than the original study, our data can exclude a reduction in 1-year weight greater than 557 g for TT relative to D2D2 homozygotes. CONCLUSION: We have not found association of the CSH1.01 genotype with fasting insulin or weight at 1 year. We conclude that the original study is likely to have over-estimated the effect size for fasting insulin, or that the difference in results reflects the younger age of subjects in this study relative to those in the previous study

    High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency

    Get PDF
    Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis

    Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite tremendous progress in understanding the mechanisms of constitutive and alternative splicing, an important and widespread step along the gene expression pathway, our ability to deliberately regulate gene expression at this step remains rudimentary. The present study was performed to investigate whether a theophylline-dependent "splice switch" that sequesters the branchpoint sequence (BPS) within RNA-theophylline complex can regulate alternative splicing.</p> <p>Results</p> <p>We constructed a series of pre-mRNAs in which the BPS was inserted within theophylline aptamer. We show that theophylline-induced sequestering of BPS inhibits pre-mRNA splicing both in vitro and in vivo in a dose-dependent manner. Several lines of evidence suggest that theophylline-dependent inhibition of splicing is highly specific, and thermodynamic stability of RNA-theophylline complex as well as the location of BPS within this complex affects the efficiency of splicing inhibition. Finally, we have constructed an alternative splicing model pre-mRNA substrate in which theophylline caused exon skipping both in vitro and in vivo, suggesting that a small molecule-RNA interaction can modulate alternative splicing.</p> <p>Conclusion</p> <p>These findings provide the ability to control splicing pattern at will and should have important implications for basic, biotechnological, and biomedical research.</p

    Glial Cell Line-Derived Neurotrophic Factor (GDNF) as a Novel Candidate Gene of Anxiety.

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample
    • …
    corecore