1,197 research outputs found

    Risk of Tooth Loss After Cigarette Smoking Cessation

    Get PDF
    INTRODUCTION. Little is known about the effect of cigarette smoking cessation on risk of tooth loss. We examined how risk of tooth loss changed with longer periods of smoking abstinence in a prospective study of oral health in men. METHODS. Research subjects were 789 men who participated in the Veterans Administration Dental Longitudinal Study from 1968 to 2004. Tooth status and smoking status were determined at examinations performed every 3 years, for a maximum follow-up time of 35 years. Risk of tooth loss subsequent to smoking cessation was assessed sequentially at 1-year intervals with multivariate proportional hazards regression models. Men who never smoked cigarettes, cigars, or pipes formed the reference group. Hazard ratios were adjusted for age, education, total pack-years of cigarette exposure, frequency of brushing, and use of floss. RESULTS. The hazard ratio for tooth loss was 2.1 (95% confidence interval [CI], 1.5-3.1) among men who smoked cigarettes during all or part of follow-up. Risk of tooth loss among men who quit smoking declined as time after smoking cessation increased, from 2.0 (95% CI, 1.4-2.9) after 1 year of abstinence to 1.0 (95% CI, 0.5-2.2) after 15 years of abstinence. The risk remained significantly elevated for the first 9 years of abstinence but eventually dropped to the level of men who never smoked after 13 or more years. CONCLUSION. These results indicate that smoking cessation is beneficial for tooth retention, but long-term abstinence is required to reduce the risk to the level of people who have never smoked.U.S. Department of Veterans Affairs Epidemiology (Merit Review grant); Massachusetts Veterans Epidemiology Research and Information Center; National Institutes of Health (R01 DA10073, R03 DE016357, R15 DE12644, K24 DE00419

    First air–sea gas exchange laboratory study at hurricane wind speeds

    Get PDF
    In a pilot study conducted in October and November 2011, air–sea gas transfer velocities of the two sparingly soluble trace gases hexafluorobenzene and 1,4-difluorobenzene were measured in the unique High-Speed Wind-Wave Tank at Kyoto University, Japan. This air–sea interaction facility is capable of producing hurricane strength wind speeds of up to u10=67 m s−1. This constitutes the first lab study of gas transfer at such high wind speeds. The measured transfer velocities k600 spanned two orders of magnitude, lying between 11 cm h−1 and 1180 cm h−1 with the latter being the highest ever measured wind induced gas transfer velocity. The measured gas transfer velocities are in agreement with the only available dataset at hurricane wind speeds (McNeil and D'Asaro, 2007). The disproportionately large increase of the transfer velocities found at highest wind speeds indicates a new regime of air–sea gas transfer, which is characterized by strong wave breaking, enhanced turbulence and bubble cloud entrainment. It was found that tracers spanning a wide range of solubilities and diffusivities are needed to separate the effects of enhanced surface area and turbulence due to breaking waves from the effects of bubble and spray mediated gas transfer

    Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank

    Get PDF
    A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air–Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions. The use of two gas tracers, N2O and C2HF5, resulted not only in gas transfer velocities, but also in the measurement of the Schmidt number exponent n with a precision of ± 0.025. The original controlled flux or active thermographic technique proposed by Jähne et al. (1989) was applied by heating a large patch at the water surface to measure heat transfer velocities. Heating a large patch, the active thermography technique is laterally homogeneous and problems of lateral transport effects are avoided. Using the measured Schmidt number exponents, the ratio of the scaled heat transfer velocities to the measured gas transfer velocities is 1.046 ± 0.040, a good agreement within the limits of experimental uncertainties. This indicates the possibility to scale heat transfer velocities measured by active thermography to gas transfer velocities, provided the Schmidt number exponent is known and that the heated patch is large enough to reach the thermal equilibrium

    Higher Inpatient Medical Surgical Bed Occupancy Extends Admitted Patients’ Stay

    Get PDF
    Objective: Determine the effect that increased medical surgical (med/surg) bed occupancy has on the time interval from admission order to arrival in the bed for the patients admitted from the emergency department (ED).Methods: This retrospective observational study compares the total hospital bed occupancy rate and the medical surgical inpatient bed occupancy rate to daily averages for the time interval from admission order (patient posting for admission) to the patient’s arrival in the inpatient bed. Medical surgical inpatient bed occupancy of 92% was chosen because beyond that rate we observed more frequent extended daily transfer times. The data is from a single large tertiary care institute with 590 beds and an annual ED census of 80,000.Results: Group 1 includes 38 days with (med/surg) inpatient bed occupancy rate of less than 92%, with an average ED daily wait of 2.5 hrs (95% confidence interval 2.23-2.96) for transfer from the ED to the appropriate hospital bed. Group 2 includes 68 days with med/surg census greater than 92% with an average ED daily wait of 4.1 hours (95% confidence interval 3.7-4.5). Minimum daily average for the two groups was 1.2 hrs and 1.3 hrs, respectively. The maximum average was 5.6 hrs for group 1 and 8.6 hrs for group 2. Comparison of group 1 to 2 for wait time to hospital bed yielded p <0.01. Total reported hospital occupied capacity shows a correlation coefficient of 0.16 to transfer time interval, which indicates a weak relationship between total occupancy and transfer time into the hospital. Med/surg occupancy, the beds typically used by ED patients, has a 0.62 correlation coefficient for a moderately strong relationship.Conclusions: Med/surg bed occupancy has a better correlation to extended transfer times, and occupancy over 92% at 5 AM in our institution corresponds to an increased frequency of extended transfer times from the ED. The process of ED evaluation, hospital admission, and subsequent transfer into the hospital are all complex processes. This study begins to demonstrate one variable, med/surg occupancy, as one of the intervals that can be followed to evaluate the process of ED admission and hospital flow. [WestJEM. 2009;10:93-96.

    High Energy Electron Confinement in a Magnetic Cusp Configuration

    Full text link
    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when beta (plasma pressure/magnetic field pressure) is order of unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high beta a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. The current experiment validates this theoretical conjecture for the first time and represents critical progress toward the Polywell fusion concept which combines a high beta cusp configuration with an electrostatic fusion for a compact, economical, power-producing nuclear fusion reactor.Comment: 12 pages, figures included. 5 movies in Ancillary file

    A naked singularity stable under scalar field perturbations

    Full text link
    We prove the stability of a spacetime with a naked singularity under scalar field perturbations, where the perturbations are regular at the singularity. This spacetime, found by Janis, Newman and Winicour, and independently by Wyman, is sourced by a massless scalar field and also arises as a certain limit of a class of charged dilatonic solutions in string theory. This stability result opens up specific questions for investigation related to the cosmic censorship conjecture and the mechanism by which it is implemented in nature.Comment: 19 pages, version to appear in IJMPD, references adde

    Two-Stream Instability Model With Electrons Trapped in Quadrupoles

    Full text link
    We formulate the theory of the two-stream instability (e-cloud instability) with electrons trapped in quadrupole magnets. We show that a linear instability theory can be sensibly formulated and analyzed. The growth rates are considerably smaller than the linear growth rates for the two-stream instability in drift spaces and are close to those actually observed

    Space-filter techniques for quasi-neutral hybrid-kinetic models

    Get PDF
    The space-filter approach has proved a fundamental tool in studying turbulence in neutral fluids, providing the ability to analyze scale-to-scale energy transfer in configuration space. It is well known that turbulence in plasma presents challenges different from neutral fluids, especially when the scale of interests include kinetic effects. The space-filter approach is still largely unexplored for kinetic plasma. Here we derive the space-filtered (or, equivalently "coarse-grained") equations in configuration space for a quasi-neutral hybrid-kinetic plasma model, in which ions are fully kinetic and electrons are a neutralizing fluid. Different models and closures for the electron fluid are considered, including finite electron-inertia effects and full electrons' pressure-tensor dynamics. Implications for the cascade of turbulent fluctuations in real space depending on different approximations are discussed.Comment: 43 pages, 2 figure

    Environments for Magnetic Field Amplification by Cosmic Rays

    Full text link
    We consider a recently discovered class of instabilities, driven by cosmic ray streaming, in a variety of environments. We show that although these instabilities have been discussed primarily in the context of supernova driven interstellar shocks, they can also operate in the intergalactic medium and in galaxies with weak magnetic fields, where, as a strong source of helical magnetic fluctuations, they could contribute to the overall evolution of the magnetic field. Within the Milky Way, these instabilities are strongest in warm ionized gas, and appear to be weak in hot, low density gas unless the injection efficiency of cosmic rays is very high.Comment: 9 pages, 8 figures; Accepted to Ap

    Nonlinear Electron Oscillations in a Viscous and Resistive Plasma

    Full text link
    New non-linear, spatially periodic, long wavelength electrostatic modes of an electron fluid oscillating against a motionless ion fluid (Langmuir waves) are given, with viscous and resistive effects included. The cold plasma approximation is adopted, which requires the wavelength to be sufficiently large. The pertinent requirement valid for large amplitude waves is determined. The general non-linear solution of the continuity and momentum transfer equations for the electron fluid along with Poisson's equation is obtained in simple parametric form. It is shown that in all typical hydrogen plasmas, the influence of plasma resistivity on the modes in question is negligible. Within the limitations of the solution found, the non-linear time evolution of any (periodic) initial electron number density profile n_e(x, t=0) can be determined (examples). For the modes in question, an idealized model of a strictly cold and collisionless plasma is shown to be applicable to any real plasma, provided that the wavelength lambda >> lambda_{min}(n_0,T_e), where n_0 = const and T_e are the equilibrium values of the electron number density and electron temperature. Within this idealized model, the minimum of the initial electron density n_e(x_{min}, t=0) must be larger than half its equilibrium value, n_0/2. Otherwise, the corresponding maximum n_e(x_{max},t=tau_p/2), obtained after half a period of the plasma oscillation blows up. Relaxation of this restriction on n_e(x, t=0) as one decreases lambda, due to the increase of the electron viscosity effects, is examined in detail. Strong plasma viscosity is shown to change considerably the density profile during the time evolution, e.g., by splitting the largest maximum in two.Comment: 16 one column pages, 11 figures, Abstract and Sec. I, extended, Sec. VIII modified, Phys. Rev. E in pres
    • …
    corecore