143 research outputs found

    Analysis of the Hydrological Budget using the J2000 Model in the Pendjari River Basin, West Africa

    Get PDF
    In a semi - arid region where water scarcity is a major problem, quantify the water balance variables is very essential for sustainable water management. In a condition where meteorological input data are often not available in a sufficient spatial and temporal resolution, simulating the water balance variables is a big challenge. This research assesses the water balance for the Pendjari River basin, a 23208 km² sub-basin of the Volta basin in West Africa. The main purpose of this study is to assess how much water is available in the Pendjari River basin in terms of blue water and green water. To assess the water balance variables the distributed hydrological model J2000 has been used. The model has been manually and automatically calibrated for the period 1982 – 1990 using 24 parameters and validated for the period 1998 – 2008. 17 of the parameters have been selected for regional sensitivity analysis. The performance of the model has been measured using objective functions: Root Mean Square Error, Percent Bias, Nash-Sutcliffe efficiency, Relative Nash-Sutcliffe efficiency and Coefficient of Determination. The findings of this study have indicated that 58.67% of annual rainfall represents the evapotranspiration, which is considered as the amount of green water used to support natural vegetation productivity and agricultural system. The total actual evapotranspiration is estimated at 87% of annual rainfall. 12.53 % of annual rainfall end up as surface runoff and 9.92% of annual rainfall represents the groundwater recharge rate. Approximately 21% of annual rainfall represents the water yield, which is devoted to blue water source in the Pendjari River basin. The meteorological simulations are globally acceptable and the hydro-meteorological component simulation has shown very good model performances in comparison with the observed discharge data, indicating the potential of J2000 model to reproduce the geographical environment of the Pendjari River basin. Keywords: J2000; Green water; Blue water; Hydrological budget; Pendjari Rive

    Bacterial cellulose as drug delivery system for optimizing release of immune checkpoint blocking antibodies

    Get PDF
    Immune checkpoint blocking therapy is a promising cancer treatment modality, though it has limitations such as systemic toxicity, which can often be traced to uncontrolled antibody spread. Controlling antibody release with delivery systems is, therefore, an attractive approach to reduce systemic antibody spread and potentially mitigate the side effects of checkpoint immunotherapy. Here, bacterial cellulose (BC) was produced and investigated as a delivery system for optimizing checkpoint-blocking antibody delivery. BC was produced in 24-well plates, and afterward, the edges were removed to obtain square-shaped BC samples with a surface of similar to 49 mm(2). This customization was necessary to allow smooth in vivo implantation. Scanning electron microscopy revealed the dense cellulose network within BC. Human IgG antibody was included as the model antibody for loading and release studies. IgG antibody solution was injected into the center of BC samples. In vitro, all IgG was released within 24 to 48 h. Cell culture experiments demonstrated that BC neither exerted cytotoxic effects nor induced dendritic cell activation. Antibody binding assays demonstrated that BC does not hamper antibody function. Finally, antibody-loaded BC was implanted in mice, and serum measurements revealed that BC significantly reduced IgG and anti-CTLA-4 spread in mice. BC implantation did not induce side effects in mice. Altogether, BC is a promising and safe delivery system for optimizing the delivery and release of checkpoint-blocking antibodies.Radiolog

    Proposing environmental flows based on physical habitat simulation for five fish species in the Lower Duero River Basin, Mexico

    Get PDF
    The concept of “environmental flow” is defined as hydrologic regimes that are required to sustain ecosystem health and functions in rivers. In Mexico, it has become an important topic, not least because a 2012 legal standard (NMX-AA-159-SCFI-2012), establishes procedures for determining instream flow requirements. Goals. The aim of this paper is to propose an acceptable environmental flow requirement for a regulated river segment in the Duero River Basin in, Michoacan, Mexico. Methods. Of the many methods of establishing environmental flows in rivers, this article is concerned with the habitat simulation method. This is based on the IFIM theoretical framework and the PHABSIM mathematical model, by which the WUA-Q curves were obtained for five species of fish. Results. From these curves, we determined that the Goodea atripinnis species has the greater habitat area and reached a maximum of 4338 m2/km for a flow of 5 m3/s; Alloophorus robustus maintained a constant habitat of 2000 m2/km between flow rates of 5 to 15 m3/s. With smaller area, Menidia jordani had a maximum habitat of 1323 m2/km for 4.5 m3/s; and with WUA less than 500 m2/km the curves of the species Algansea tincella and Aztecula sallaei were obtained. Conclusions. The average regulation in March and April was 3.61 and 3.44 m3/s and with the EFR proposal it was 5.11 and 5.00 m3/s for March and April, respectively. In general, the monthly environmental regime is to maintain 80% of the natural flow regime, generating an increase in habitat during the dry season of 24% for A. robustus and 23% for A. sallaei

    Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    Get PDF
    FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators.We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively.FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes

    Nanocellulose as a natural source for groundbreaking applications in materials science: Todays state

    Get PDF
    Nanocelluloses are natural materials with at least one dimension in the nano-scale. They combine important cellulose properties with the features of nanomaterials and open new horizons for materials science and its applications. The field of nanocellulose materials is subdivided into three domains: biotechnologically produced bacterial nanocellulose hydrogels, mechanically delaminated cellulose nanofibers, and hydrolytically extracted cellulose nanocrystals. This review article describes todays state regarding the production, structural details, physicochemical properties, and innovative applications of these nanocelluloses. Promising technical applications including gels/foams, thickeners/stabilizers as well as reinforcing agents have been proposed and research from last five years indicates new potential for groundbreaking innovations in the areas of cosmetic products, wound dressings, drug carriers, medical implants, tissue engineering, food and composites. The current state of worldwide commercialization and the challenge of reducing nanocellulose production costs are also discussed.Dana Kralisch and Dagmar Fischer gratefully acknowledge the Free State of Thuringia and the European Social Fund (2016 FGR 0045) for funding. Dagmar Fischer would like to thank Yvette Pötzinger and Berit Karl for the excellent editorial support. Dieter Klemm, Friederike Kramer and Katrin Petzold-Welcke are grateful for the support by the Federal Ministry of Economic Affairs and Energy, ZIM (KF2748903MF4 and KF2386003MF3). Thanks are due to the employees of Jenpolymer Materials Ltd. & Co. KG and the Polymet Jena Association, especially Priv.-Doz. Dr. Wolfgang Fried, and Prof. Dr. Raimund W. Kinne, Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Germany as well as to Dr. Detlef Gorski and Elke Langhammer, SuraChemicals GmbH, Jena, Germany for effective and helpful cooperation and stimulating interaction. Dieter Klemm and Friederike Kramer would like to thank Katharina Horn for the excellent editorial support. Miguel Gama acknowledges the funding from QREN (“Quadro de Referência Estratégica Nacional”) through the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte. Tom Lindström acknowledges RISE Bioeconomy for support and permission to publish. Emily Cranston and Stephanie Kedzior are thankful for funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of a Discovery Grant (RGPIN 402329) and PGSD graduate student scholarship, as well as support from the Faculty of Engineering at McMaster University.info:eu-repo/semantics/publishedVersio

    Chemerin and Adiponectin Contribute Reciprocally to Metabolic Syndrome

    Get PDF
    Obesity and metabolic syndrome (MetS) are considered chronic inflammatory states. Chemerin, a novel adipokine, may play an important role in linking MetS and inflammation. We investigated the association of chemerin with inflammatory markers and with characteristics of MetS in apparently healthy overweight and obese adults. We studied 92 adults; 59 men and 33 women whose average body mass index (BMI) was 28.15±5.08 kg/m2. Anthropometric parameters, insulin resistance indices, lipid profiles, and inflammatory markers including high sensitivity C-reactive protein (hsCRP), pentraxin 3 (PTX3), adiponectin, and chemerin were measured. Controlling for age, gender, and BMI, serum chemerin level was positively correlated with body fat and serum triglyceride, and negatively correlated with adiponectin and high density lipoprotein cholesterol (HDL- C), and was not correlated with altered hsCRP or PTX3 levels. Among the low, moderate and high chemerin groups, high chemerin individuals are more likely to have lower HDL-C. Conversely, individuals in the low adiponectin group are more likely to have lower HDL-C and show more MetS phenotypic traits than moderate and high adiponectin subjects. To determine the relationships of chemerin and adiponectin to MetS and its components, participants were stratified into four groups based on their chemerin and adiponectin levels (high chemerin/high adiponectin, high chemerin/low adiponectin, low chemerin/high adiponectin, or low chemerin/low adiponectin). Participants who were in the high chemerin/low adiponectin group more likely to have dyslipidemia and MetS (OR: 5.79, 95% CI:1.00–33.70) compared to the other three group. Our findings suggest that chemerin and adiponectin may reciprocally participate in the development of MetS

    Chemerin regulates β-cell function in mice

    Get PDF
    Although various function of chemerin have been suggested, its physiological role remains to be elucidated. Here we show that chemerin-deficient mice are glucose intolerant irrespective of exhibiting reduced macrophage accumulation in adipose tissue. The glucose intolerance was mainly due to increased hepatic glucose production and impaired insulin secretion. Chemerin and its receptor ChemR23 were expressed in β-cell. Studies using isolated islets and perfused pancreas revealed impaired glucose-dependent insulin secretion (GSIS) in chemerin-deficient mice. Conversely, chemerin transgenic mice revealed enhanced GSIS and improved glucose tolerance. Expression of MafA, a pivotal transcriptional factor for β-cell function, was downregulated in chemerin-deficient islets and a chemerin-ablated β-cell line and rescue of MafA expression restored GSIS, indicating that chemerin regulates β-cell function via maintaining MafA expression. These results indicate that chemerin regulates β-cell function and plays an important role in glucose homeostasis in a tissue-dependent manner

    Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance.

    Get PDF
    Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance

    Adipocyte extracellular matrix composition, dynamics and role in obesity

    Get PDF
    The central role of the adipose tissue in lipid metabolism places specific demands on the cell structure of adipocytes. The protein composition and dynamics of the extracellular matrix (ECM) is of crucial importance for the functioning of those cells. Adipogenesis is a bi-phasic process in which the ECM develops from a fibrillar to a laminar structure as cells move from the commitment phase to the growth phase characterized by storage of vast amounts of triglycerides. Mature adipocytes appear to spend a lot of energy on the maintenance of the ECM. ECM remodeling is mediated by a balanced complement of constructive and destructive enzymes together with their enhancers and inhibitors. ECM remodeling is an energy costing process regulated by insulin, by the energy metabolism, and by mechanical forces. In the obese, overgrowth of adipocytes may lead to instability of the ECM, possibly mediated by hypoxia
    corecore