M3IASY ‘HDOYHVYISIY

Materials Today ® Volume 21, Number 7 ® September 2018 RESEARCH

®

Check for
updates

ELSEVIER

Nanocellulose as a natural source for
groundbreaking applications in materials
science: Today’s state

Dieter Klemm "+, Emily D. Cranston %, Dagmar Fischer®, Miguel Gama*,
Stephanie A. Kedzior ?, Dana Kralisch *°, Friederike Kramer ', Tetsuo Kondo ®,
Tom Lindstrom ’, Sandor Nietzsche %, Katrin Petzold-Welcke °, Falk Rauchfu3 '°

! Polymet Jena Association, Wildenbruchstr. 15, 07745 Jena, Germany

2 McMaster University, Department of Chemical Engineering, 1280 Main Street West, Hamilton, ON, Canada

3 Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Otto-Schott-StraBe 41, 07745 Jena, Germany

4 University of Minho, Center of Biological Engineering, IBB - Institute for Biotechnology and Bioengineering, Campus de Gualtar, 4710-057 Braga, Portugal
® JeNaCell GmbH, Winzerlaer Str. 2, 07745 Jena, Germany

6 Kyushu University, Graduate School of Bioresource and Bioenvironmental Sciences, Biomacromolecular Materials Lab and Biomaterial Design Lab, 6-10-1,
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

7 RISE Bioeconomy, Box 5604, S-114 86 Stockholm, Sweden

8 University Hospital Jena, Center for Electron Microscopy, Ziegelmuehlenweg 1, 07743 Jena, Germany

9Jenpolymer Materials UG & Co. KG, Wildenbruchstr. 15, 07745 Jena, Germany

1% Jena University Hospital, Department of General, Visceral and Vascular Surgery, Am Klinikum 1, 07747 Jena, Germany

Nanocelluloses are natural materials with at least one dimension in the nano-scale. They combine
important cellulose properties with the features of nanomaterials and open new horizons for materials
science and its applications. The field of nanocellulose materials is subdivided into three domains:
biotechnologically produced bacterial nanocellulose hydrogels, mechanically delaminated cellulose
nanofibers, and hydrolytically extracted cellulose nanocrystals. This review article describes today’s
state regarding the production, structural details, physicochemical properties, and innovative
applications of these nanocelluloses. Promising technical applications including gels/foams, thicken-
ers/stabilizers as well as reinforcing agents have been proposed and research from last five years
indicates new potential for groundbreaking innovations in the areas of cosmetic products, wound
dressings, drug carriers, medical implants, tissue engineering, food and composites. The current state of
worldwide commercialization and the challenge of reducing nanocellulose production costs are also
discussed.

Introduction of nanomaterials. They open up groundbreaking new biomedi-
Cellulose is a fascinating biopolymer and sustainable raw mate-  cal, environmental, and technical application areas. At the same
rial. It is one of the most important natural polymers and a key time, nanocelluloses also represent an excellent example of the
source of renewable materials on an industrial scale [1-6]. Cellu-  ©ongoing merger of biological and materials engineering.

losic materials with at least one dimension in the nanometer It is convenient to subdivide nanocelluloses into three cate-
range are referred to as nanocelluloses [7-10]. These nanocellu-  gories: bacterial nanocellulose (BNC, also known as microbial

loses combine important cellulose properties with the features cellulose or biocellulose), cellulose nanofibrils (CNFs, also called
nano/microfibrillated cellulose), and cellulose nanocrystals

(CNGCs, also previously referred to as nanocrystalline cellulose)

* Corresponding author. as reviewed previously [10]. The production of the three types
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Nomenclature

ACC aqueous counter collision
AE-BNC aminoethyl-BNC

AFM atomic force microscopy
BNC bacterial nanocellulose
CBM3  carbohydrate binding module with affinity to cellulose

CM-BNC carboxymethyl-BNC

CNCs  cellulose nanocrystals

CNFs cellulose nanofibrils

CP-MAS NMR cross polarization magic angle spinning nuclear
magnetic resonance

CSA Canadian Standards Association

DABC  reactive 2,3-dialdehyde derivatives

DEAE-BNC diethyl aminoethyl-BNC

DP degree of polymerization

FE-SEM field-emission scanning electron microscopy
FTIR fourier transform infrared spectroscopy
GAB guided assembly-based biolithography

GE graphene
GRGDY glycine-arginine-glycine-aspartic acid-tyrosine
HoLiR  Horizontal Lift Reactor

ISO International Organization for Standardization
MMR Tech Mobile Matrix Reservoir Technology
MWCNT multi-walled carbon nanotubes

PAA poly(acrylic acid)

PANI polyaniline

PDMS  polydimethylsiloxane

PSA pressure sensitive adhesives

PVA poly(vinyl alcohol)

R&D research and development

RGD arginine-glycine-aspartic acid

RGDC  arginine-glycine-aspartic acid-cysteine

SEM scanning electron microscopy

TAPPI ~ Technical Association of the Pulp and Paper Industry

TC terminal complex

TEM transmission electron microscopy

TEMPO 2,2,6,6-tetramethylpiperidinyloxyl

TMAHP-BNC trimethyl ammonium betahydroxy propyl-BNC
WAXS  wide-angle X-ray scattering

XG-GRGDS  xyloglucan-glycine-arginine-glycine-aspartic acid-serine

of nanocelluloses takes place in different ways; BNC is produced
biotechnologically by bacteria, CNFs are mechanically produced
by delaminating plant-based cellulose and CNCs are isolated by
chemical hydrolysis or oxidation. Updating former nanocellu-
lose data [10] a side-by-side comparison of BNC, CNF, and
CNC morphology and physical properties is summarized in
Table 1.

For the production and application of nanocelluloses, under-
standing cellulose structure is crucial. Cellulose is characterized
as a high molecular weight homopolymer of f-1,4-linked
anhydro-p-glucose units where every unit is corkscrewed 180°
with respect to its neighbours [11]. Each cellulose chain has
two different end groups: one has a chemically reducing func-
tionality (a hemiacetal unit), and the other has a pendant hydro-
xyl group and is the nominal nonreducing end (see Fig. 1). The
number of glucose units or the degree of polymerization (DP)
can be up to 20,000, but depends on the cellulose source [11].

In plants, cellulose biosynthesis is orchestrated by specific
enzymatic terminal complexes (TCs) located in the plasma mem-
brane. The synthesis process is not fully understood, but the
structure of cellulose microfibrils implies that their synthesis
and assembly involve the coordination of 36 active sites [12].

TABLE 1

TCs assemble in the Golgi apparatus where they are inactive,
but move through the plasma membrane when they become
activated. During cellulose synthesis, TCs move through the
plasma membrane in directions that coincide with the orienta-
tion of the microtubules which have been shown to exert a direct
influence on the orientation of cellulose deposition [13]. During
biosynthesis, cellulose chains are aggregated in microfibrils with
cross sectional dimensions ranging from 2 to 20 nm, depending
on the cellulose source [11]. The aggregation occurs via van der
Waals forces and intra- and inter-molecular hydrogen bonding.
If the TCs are not perturbed, they can generate a limitless supply
of microfibrils with a small number of defects or amorphous
domains [14].

Many studies have been performed in order to propose the
nature of the supramolecular structure of cellulose including
the crystal structure and dimensions, as well as defects and amor-
phous domains, with much debate remaining to this day [15]. In
fact, even the methods to measure crystallinity are not agreed
upon [16-19]. A common view is that the amorphous regions
are distributed as chain dislocations on segments along the ele-
mentary fibril where the microfibrils are distorted by internal
strain in the fiber and proceed to tilt and twist [20]. However,

Side-by-side comparison of BNC, CNF, and CNC morphology and physical properties.

Nanocellulose type Length Cross- Degree of Crystallinity/crystal structure
section polymerization

Bacterial nanocellulose  Different types of nanofiber networks 20-100 nm  4000-10,000 la (shell) and IB (core) — highest degree
(BNC) of crystallinity

Cellulose nanofibrils 0.1-2 pm 5-60 nm >500 Primarily I - lowest degree of
(CNF) crystallinity

Cellulose nanocrystals ~ 100-250 nm (from plant celluloses);  5-70 nm 500 - 15,000 Primarily 1B, sometimes lo. — medium
(CNQ) 100 nm to several micrometers (from degree of crystallinity

celluloses of tunicates, algae,
bacteria)
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Nonreducing end

FIGURE 1
Molecular structure of cellulose.

more recent studies indicate that amorphous regions may be very
small, and/or are probably more correctly only “slightly disor-
dered” and not fully amorphous, or likely form a shell or outer
core around the more crystalline regions [21,22]. It is similarly
of great interest to understand the crystallinity of cellulose in
nature as Agarwal et al. have now proposed that drying/process-
ing of wood pulp is necessary to induce “measurable” crys-
tallinity and for example, CNCs cannot be produced from
never-dried wood (using the conditions tested in their work)
[23]. This has important implications if processing of pulp fibers
can help to improve crystallinity and therefore the yield of
nanocelluloses [24,25].

Microorganisms are also able to produce nanocellulose
directly [10]. The most commonly used microorganisms are
acetic acid bacteria of the genus Gluconacetobacter (synonym
Komagataeibacter). This bacterial nanocellulose is synthesized
as a formstable water-containing nanofiber network, which is
made of 1% cellulose and 99% water. The diameter of the nano-
fibers is between 20 and 100 nm. In this bacterium, the enzyme
cellulose synthase is present on the cytoplasmic membrane, and
the cellulose product is obtained extracellularly.

The bacterium produces pure cellulose. A single cell may poly-
merize up to 200,000 glucose residues per second into B-1,4-
glucan chains. Assembly of the ribbon takes place in several
steps. The cellulose-synthesizing sites on the cell surface are
made of pores that are arranged in a linear row. Each pore covers
a 10-nm particle that consists of the cellulose-synthesizing
enzymes involved in the polymerization reaction and accessory
proteins possibly involved in other functions. Each 10-nm parti-
cle produces a number of glucan chains that form a 1.5-nm sub-
elementary fibril. The sub-elementary fibrils together form the
microfibril. The biosynthetic pathway for cellulose biosynthesis
is very well understood in this bacterium. It involves stepwise
phosphorylation of glucose and formation of UDP-glucose,
which is used as a substrate by the enzyme cellulose synthase
[26]. This process yields highly crystalline BNC.

In contrast, CNFs and CNCs are obtained through isolation
processes from macroscale cellulosic materials as previously men-
tioned. The isolation of CNFs occurs via mechanical disintegra-
tion, yielding particles containing both disordered and
crystalline regions. The overall goal in CNF production is to
maintain the crystalline form and also to maintain the degree
of polymerization as much as possible of the delaminated CNF
filaments. The isolation of CNCs by acid hydrolysis (and less
commonly by oxidation) selectively degrades disordered cellu-
lose chains, resulting in highly crystalline nanoparticles. The

Cellobiose

Reducing end

CSA Standard for cellulose nanomaterials defines CNFs as cellu-
losic objects composed of at least one primary fibril, containing
crystalline and amorphous regions, with aspect ratios usually
greater than 50. CNCs are defined as having high crystallinity,
a high degree of short range order, and consisting of >99% pure
cellulose [27].

In the present review article, the production (including inter-
national market launch), structural details, physicochemical
properties, and innovative applications of BNC, CNFs, and CNCs
are described. The search for new applications for these nanocel-
luloses is an important driving force for research and develop-
ment (R&D) in research groups and increasingly in companies.
A snapshot of “today’s state” is given in the corresponding sub-
chapters of the review.

Bacterial nanocellulose

Properties and potential applications of BNC

BNC is widespread in nature. It is generated wherever the fer-
mentation of sugars and plant carbohydrates via microorganisms
takes place. Its biological formation opens up the opportunity to
develop biotechnological production pathways to significantly
influence and control the final BNC material features. The
unique properties of native BNC include, in particular, high pur-
ity (pure cellulose), a nanofiber network structure and a high
water content of 99% in the form of mechanically and thermally
stable hydrogel bodies. These gel bodies are generated in planar
form (fleeces/pellicles) with the same dimensions as the cultiva-
tion reservoir or can be brought into a complex three-
dimensional shape by use of templates.

BNC hydrogels can be dried by different methods: air and
press drying (both at room temperature or heating up to about
200 °C), freeze drying as well as critical point drying. Dewatering
can also be achieved by stepwise solvent exchange. The drying
method has a significant effect on the resulting BNC properties.
Air-drying BNC leads to a loss of the characteristic three-
dimensional network structure as shown by intense wrinkling
as a result of strong shrinkage, superficial hornification, fiber
aggregation, and reduced porosity. The same holds true for dry-
ing by pressing, but under these conditions wrinkling is avoided.
Furthermore, BNC becomes brittle when dried completely. To
prevent brittleness, a stepwise water reduction leads to an
increased concentration of cellulose in the sample. This is of
importance for applications of BNC hydrogels as medical
implants [28]. Another method of brittleness prevention is the
post-modification of BNC with selected additives like inorganic
salts or polyalcohols which results not only in a fast reswelling
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behavior (so called shape-memory effect) after air-drying but also
in more flexible storage forms [29].

Freeze drying and critical point drying are gentle procedures,
which retain the original nanofiber structure. In both cases, the
water is replaced by air to form aerogels. In order to critically
point dry a BNC sample, a stepwise solvent exchange from water
to acetone or ethanol (resulting in an organogel) is an intermedi-
ate material prepared before the alcohol is exchanged to liquid
carbon dioxide. Both freeze drying and critical point drying are
well suited for the preparation of BNC samples for scanning elec-
tron microscopy and other characterization. Even though these
materials are dried completely they are more compliant and
not brittle.

One of the first commercially available BNC products was
Nata de Coco, a popular dessert in Asian countries [30-32]. More
recently, in some applications BNC shows potential to outper-
form the currently used celluloses in the food industry as a
promising novel hydrocolloid additive. It should be noted that
large efforts are currently underway to enhance BNC from a food
to a new generation of nature-based sophisticated materials. Dur-
ing the last couple of years, several young companies worldwide
have started to bring such BNC-based products to the market.
Examples are DePuy Synthes, USA (SYNTHECEL® Dura Repair
(implant)), JeNaCell GmbH, Germany (epicite™%° (wound dress-
ing)), and BOWIL, Poland (Celmat (wound dressing)).

Although BNC consists of biopersistent elongated fibers with
nanosized diameters, (i.e., structures that are the subject of inten-
sive nanosafety discussions), BNC is categorized as a highly bio-
compatible material [9]. This has been reported for mice, rats,
rabbits, and pigs without severe signs of inflammation, fibrotic
capsule formation, or toxicity on the genetic and cellular level
as a result of in vitro-, ex ovo-, and in vivo-investigations even
in long-term applications of up to one year [33-37]. Based on this
compatibility and non-toxicity, there has been a recent increase
in publications focused on developing BNC medical applications
spanning wound dressings to medical implants. It is worth men-
tioning that wound dressings made of BNC are currently on the
market and even some BNC implants have made their way to
multi-center clinical studies [28]. In general, BNC is one of the
very few biomaterials that represents a completely novel solution
to hitherto unresolved problems in regenerative medicine.

In the recent years, enormous progress in BNC cultivation
techniques has been made which provides access to controlled
production conditions, high-quality materials with the possibil-
ity of upscaling in a way that may broaden BNC use. However,
reducing the production costs remains a crucial challenge. The
key measures to reduce BNC production costs are (i) the use of
alternative feedstocks especially plant wastes, (ii) novel bioreac-
tor designs and their automation and (iii) scale-up (details in
Section Up-scaled production).

In parallel, many excellent review articles [10,38-41] and
books [42-45] on BNC have been published and the scientific lit-
erature continues to grow exponentially (Fig. 2). In the following
subchapters, selected current and forward-looking hot topics of
BNC research, development, and applications are discussed in
more detail including production of BNC and scale-up, product
design, and structural characterization. Moreover, modification
of BNC for medical applications and current examples for the
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FIGURE 2

Annual publications from 2000 to 2017 (compiled Sep. 2017). Searches were
done with ScienceDirect using the topics: bacterial cellulose, bacterial
nanocellulose, microbial cellulose, BNC, bacterially synthesized cellulose and
biocellulose.

development of medical implants based on BNC hydrogels are
presented.

BNC production and design

Up-scaled production

In the past and currently, the majority of commercial products
made from BNC use agriculturally produced BNC, called biocellu-
lose. The production process is still done by hand but produces
BNC in large quantities of 500-1500 tons per year per producer in
the traditional fermentation industry of Nata de Coco farms,
mainly situated in Asian countries such as Indonesia and the
Philippines [46,47]. Biocellulose fleeces are typically cultivated for
7-14 days in plastic pans or jars at temperatures ranging from 23
to 32 °C depending on the surrounding environmental conditions
[30]. One plastic jar containing, for example, 500-g Nata de Coco
culture broth typically yields 1.5-g dry biocellulose [48]. The imple-
mentation of advances and new scientific findings in these biocel-
lulose cultivation procedures are rather slow due to family-owned
companies organized in a cottage industry style and the fact that
production often occurs in rural areas with little infrastructure
[47]. Nevertheless, biocellulose is well suited for, and mainly used
in, the food and cosmetics industries and is traded worldwide.
The utilization of this type of BNC in medical, pharmaceutical,
and advanced technical applications is, however, hampered by
varying culture conditions and feedstock qualities, possible impu-
rities, and a comparatively low material stability [49].

The need for high-quality BNC has triggered R&D of biotech-
nological cultivation techniques as well as the formation of sev-
eral new companies worldwide. In general, methods under
investigation for biotechnological BNC production range from
agitated to static cultivation approaches using batch or fed-
batch up to continuous cultivation methods [50]. Typical biore-
actors such as aerated fermenters or bubble columns, and less
conventional rotary disc reactors, have been utilized [51]. Fur-
thermore, specific bioreactor concepts to produce tubular BNC,
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which is ideally suited as an implant material, have been
designed [52,53].

The choice of cultivation technique depends on the intended
application of the BNC material, since the cellulose supramolec-
ular structure and its physical and mechanical properties are
influenced by the production method. Depending on the specific
bacteria strain, process parameters such as composition of the
culture medium, temperature, pH, and dissolved oxygen content
determine the productivity of the bioprocess [48] and should be
controlled in order to obtain reproducible material properties of
the harvested BNC. Many research groups have also intensely
investigated the use of plant waste materials (e.g., molasses, corn
steep liquor, and rotten fruits) as carbon source and nutrients in
order to reduce the production costs [40,54]. For some substrates
such as sugar cane molasses or konjac flour, even higher yields
than for sucrose and fructose or glucose were found [55,56].
These findings pave the way for more cost efficient BNC produc-
tion. However, one has to keep in mind that these feedstocks are
not suited for applications with high purity and reproducibility
requirements, e.g., medical devices, implants, or drug delivery
systems made of BNC.

Even under industrial, controlled conditions, planar BNC is
still mostly produced by a conventional batch cultivation in
pans. Alternatively, thin layer cultivation on solid phases such
as agar [57], silicone rubber [58], and on different porous mem-
branes [59] or plastic composite supports [60] have been
described. On these supports, the BNC can be accumulated at
the interface of the air and culture medium.

Cultivation under shaking and stirring in submerged cultures
as well as several modified agitated production procedures have
been thoroughly studied as well. These methods provide a
fibrous or pellet-like material [61]. The yield of the BNC obtained
tends to be lower than in static culture as the shear stresses pro-
mote mutation of bacteria into non-cellulose producing strains
[48], but single strains with higher resistance have been already
found. Stirred-tank and air-lift reactors are the most commonly
used bioreactors for BNC generation under agitated cultivation
conditions [62]. Successful pilot-scale production under agitated
conditions was demonstrated by Song and colleagues using a 50-
L modified airlift-type bubble column bioreactor and utilizing
saccharified food waste as feedstock [63].

A novel type of bioreactor called a Horizontal Lift Reactor
(HoLiR) was developed by Kralisch and colleagues [64]. It combi-
nes strategies from both static and agitated cultivation and
allows for a (semi-)continuous cultivation and harvesting of pla-
nar fleeces and foils of BNC. The authors published the successful
transfer of the approach to pilot-scale processing in a 180 L
HoLiR bioreactor and the combination with a continuous
down-stream processing unit (see Fig. 3) [65]. The replacement
of batch by (semi-)continuous processing and the scale-up
resulted in a significant reduction of production costs [11,26].
The controlled, steady-state cultivation conditions within the
HoLiR are also the reason for the reproducible generation of
high-quality BNC materials characterized by a very homoge-
neous network and a uniform surface.

The up-scaled and automated HoLiR production process is
now applied by the German company JeNaCell under rigorous
quality management to produce advanced BNC-based products

Picture of HoLiR pilot-plant and of the resulting homogenous BNC fleece
[65].

for medical and dermatological applications. Other BNC produc-
ers include BOWIL Biotech in Poland, S2Medical in Sweden,
fzmb in Germany, and DePuy Synthes in Pennsylvania, USA.

In summary, the up-scaling and industrialization of BNC pro-
duction, urgently required to meet the large market potential of
this high-performance biopolymer in many applications, has
successfully begun but is still small compared to the annual pro-
duction capacity of the Nata de Coco industry. In parallel to the
development of new approaches using biotechnological reactors,
improved process design and scale-up, fundamental studies of
the biosynthesis of BNC remain crucial. A better understanding
of the biosynthetic process and structural characterization of
the functional cellulose synthase complexes will provide valu-
able insights into the bioprocess and will further increase the effi-
ciency and controllability of the BNC production process [66].

Layer-by-layer design of planar BNC materials, coatings, and composites
In most cases, BNC is produced by cultivation of acetic acid bac-
teria in an aqueous culture medium under static conditions, as
described previously. Fig. 4a, shows how a BNC hydrogel is
formed at the surface of a liquid culture medium, which is in
direct contact with the air. Scale-up production techniques are
described in the preceding chapter. The static process allows vari-
ation of the reservoir geometry, temperature, type of culture
medium, and the bacterial strain to influence the properties
and tailor the resulting BNC for a variety of applications.

In the last few years, the R&D focus of Klemm and co-workers
[67-69] has been on the creation of additional control elements
for BNC production. In the resulting process, the design of not
only the shape and dimension of the hydrogel bodies, but also
the most important BNC properties such as structure of the sur-
faces and the internal nanofiber network architecture, can be
reproducibly controlled via control elements of the bioreactor.
In the case of the developed dynamic cultivation (see Fig. 4b),
a matrix that contains the templates is moving periodically
between the air space and the reservoir, which is filled with the
liquid culture medium. During dipping, the template is loaded
with culture medium and bacteria. After leaving the liquid, the
BNC formation takes place exclusively on the template surface.
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FIGURE 4

Schematic representation of (a) conventional static BNC fabrication and (b) the Mobile Matrix Reservoir Technology (the arrow symbolizes the dipping

process of the template).

This dipping process causes turbulence in the culture medium,
and the BNC formation at the surface area of the liquid culture
cannot take place. With this Mobile Matrix Reservoir Technology
(MMR Tech), it is possible to produce flat BNC hydrogels. After
biosynthesis, the hydrogels have to be removed from the tem-
plate, purified in boiling aqueous sodium hydroxide solution,
and washed with water. The resulting material is characterized
by two different surfaces — one was in contact with the air, the
other one was in contact with the template.

The unique feature of this MMR Tech is the layer-by-layer
BNC formation. In contrast to the usual static BNC production,
with MMR Tech, self-contained layers are generated because of
the air contact after each immersion step. Nevertheless, the con-
nection between these single self-contained layers is so strong
that the hydrogel assembled does not delaminate.

The MMR Tech allows for the production of completely novel
types of BNC materials. Additional control elements for the design
of the surface structure and the network architecture of the bulk are
the material, shape, dimensions, and the surface texture of the
template as well as the moving mode of the matrix. Moreover,
the layer-by-layer formation is also useful for coating different
materials with BNC layers, using the material in question as the
template. The strength of the substrate-layer interaction depends
mainly on the hydrophilicity and the porosity of the template
material. Partial or complete drying — in air or by heating — causes
the coated layers to shrink offering even stronger attachment.

The layer-by-layer formation also allows for the important
possibility of incorporating different types of dissolved as well
as dispersed additives into the BNC nanofiber architecture. In
the usual static method, solid additives can only be inserted into
the lowest layer of the resulting BNC hydrogel facing the liquid
culture medium. In one exciting example, the MMR Tech
enabled the development of BNC-CNF hybrids, where the non-
moldable CNF material was incorporated into the molded BNC
body. The culture medium contained dispersed CNF, which were
attached to the template surface as the template leaves the cul-
ture medium. When CNFs labeled with red dye was used, the
cross section of the resulting hydrogel was homogeneously
stained, showing the incorporation of CNFs throughout the
entire hydrogel cross-section.

By using MMR Tech, molded BNC hydrogels, such as pouches
and polymer-reinforced composites can be produced. For com-
posite assembly, the water contained in the shaped BNC hydro-
gel is exchanged to a mixture of monomers and crosslinkers, e.g.,
precursors for epoxy resins as well as thermally or photochemi-
cally polymerizable acrylate and methacrylate systems. During
crosslinking polymerization, the original shape of the BNC mate-
rial remains unchanged. In this way, it is possible to produce
fiber-reinforced polymer composites in terms of polymer-
enhanced shaped BNC fiber structures.

BNC-relevant electron microscopy procedure

Since single fibers of BNC have a thickness in the range of tens of
nanometers, electron microscopy is well suited to study their
morphological properties. In order to investigate whole pieces
of actual BNC components or products, scanning electron micro-
scopy (SEM) can be used as it does not require the preparation of
ultrathin sections as required for transmission electron micro-
scopy (TEM). The notably large depth of field of SEM is very help-
ful to image three-dimensional BNC objects. Nevertheless, a
field-emission SEM should be used to provide magnifications
up to 100,000x.

Fresh BNC samples contain a high amount of water — the
embedded water has a substantial contribution to the shape of
the object. This water has to be removed during sample prepara-
tion for SEM to be vacuum stable as well as to reveal the cellulose
fibers. Simple air-drying leads to a collapsed and altered structure
due to the surface and interfacial tension of the evaporating
water, respectively. This is well known from the treatment of
other biological samples like cells or tissue [70] and must be
avoided to obtain meaningful micrographs. Two alternative ways
of drying that are well established in SEM sample preparation are:
freeze drying and critical-point drying (see Fig. 5). Both tech-
niques avoid the liquid-gas phase transition by either staying in
the solid phase followed by sublimation or the critical state where
a liquid and its vapor can coexist. While critical-point drying is
usually used for cells and tissues, freeze drying is also useful for
BNC samples since they are not sensitive to freezing damage. In
our experience, no differences were observed between freeze
drying and critical-point drying techniques.
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(a) Schematic phase diagram showing the drying process (1 to 2). To avoid
the liquid—-gas phase transition either freeze-drying (dotted) or critical-point
(CP) drying (dashed) is possible. An air-dried BNC sample (b) is clearly
collapsed and shrunk in comparison to a freeze-dried one (c) of the same
batch. Scale bars are 2 mm.

Dry BNC samples are very sensitive to touch even if probed
very gently with fine tweezers. Areas of interest for imaging
should never be touched with handling tools or by the wall of
the container. The same problem arises if inner parts are to be
explored, e.g., by cross sectioning. The only way to show
untouched areas is to prepare a guiding cut and further tear the
region of interest apart (see Fig. 6).

Finally, the dry BNC samples must be glued onto SEM sample
holders and their surface must be coated to be electrically con-
ductive. The glue should have a higher viscosity and a low
amount of solvent in order to avoid infiltrating the sample more
than necessary. Good results can be obtained using conducting
carbon cement (Leit-C) and allowing it to briefly pre-dry. The sur-
face can be treated by sputter coating with gold or platinum.
Because of the porosity of the sample material, the real surface
area is notably larger than the surface seen by microscopy. There-
fore the specified layer thickness at the sputter device has to be
set much higher than the thickness actually applied to the indi-
vidual BNC fibers since the target thickness always refers to a per-
fectly flat surface. A nominal value of approximately 20 nm

SEM image of a cross section of a BNC piece showing artifacts introduced by
touching. The sample was cut by a razorblade from the right hand side
halfway leaving a crushed surface, the rest was torn apart. Original
magnification 1000x, scale bar is 10 um.

effectively prevents surface charging and does not visibly load
the BNC fibers with metal.

Preparation of single BNC fibers

Recently, a novel method to pulverize hierarchically organized
bio-based materials into nano-objects using only the collision
energy of dual water jets was invented by Kondo et al. [71-79].
This technique termed “aqueous counter collision” (ACC) suc-
cessfully dissociates the weaker intermolecular interactions such
as van der Waals forces in bio-based materials without any chem-
ical modification. In the ACC system, an aqueous suspension
containing micron-sized material is pre-divided between two fac-
ing nozzles as shown in Fig. 7. Water jets from each nozzle then
rapidly impinge on each other, resulting in the nano-
pulverization of the dispersed sample. In the collision of dual
water jets in the ACC treatment, ejecting water molecules are
assumed to transfer the kinetic energy toward the sample in
order to hierarchically overcome the van der Waals forces [72].

ACC can be used to produce CNFs, in the case of wood pulp
cellulose samples, the width of the nanofibrils is reduced to
10-15 nm [72]. When the ACC treatment is applied to a BNC
pellicle, the BNC network that is held together by a combination
of hydrogen bonds and van der Waals forces is easily and rapidly
liberated into single cellulose nanofibers (single is equivalent to
“individual”) [73]. The characterization of the BNC fibers is
described in the following section [73].

Morphological aspects of a single BNC [3] — Before ACC, the net-
work structure of fibers in the pellicle is visible by polarized opti-
cal microscopy. After a few collisions (=a Pass) of the ACC
treatment, nothing is observed using a polarized optical micro-
scope, but a BNC fiber with a nano-sized width can be observed
by TEM. The sizes of BNC depending on Pass number are listed in
Table 2. Width of the BNC fiber decreases with increasing Pass
number in ACC treatment.

The nano-pulverization by ACC exposes internal faces in
native BNC to the surface which increases the surface area of the
new BNC, as shown by TEM [73] (specific aspect area/m? x g~ !
=43.0 (0 Pass), 54.5 (30 Pass), and 55.9 (60 Pass)). Width and
length of BNC fibers is difficult to measure because of the self-
aggregation on the TEM grid during sample preparation.
Aggregation-free BNC on the grid is, therefore, selectively
employed for the measurements of width and length, respectively.

(i) Transmission electron microscopy — Observation by TEM is
employed for measurements of both width and length of a
single BNC fiber using acquired digitized images. The
essential procedure is presented in detail:

- To avoid self-aggregation of the nanofibers, 10 mL of ca.
0.04% (w/v) aqueous suspension of BNC is mixed with
10 mL of 0.4% (w/w) of poly(vinyl alcohol) (PVA) aque-
ous solution. The mixture is stirred at 50 °C for 3 days
before it is diluted to 1/10 concentration using deion-
ized water.

- A mixture of 1 mL of this suspension is added to 9 mL of
0.2% uranium acetate aqueous solution is sonicated for
10 s, mounted on copper grids and finally air-dried.

- The BNC on the grid is observed using TEM at 80 kV of
the accelerating voltage.
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Schematic representation of aqueous counter collision (ACC) system using impinging dual aqueous suspension jets.

TABLE 2

Width, length, and aspect ratio of individual BNC fibers obtained by ACC
treatment under 200 MPa as the ejecting pressure.

Pass number Width (nm) Length (um) Aspect ratio”
0 69 + 35 24+19 346

20 48 + 34 5+4 102

40 33+ 14 3+2 101

60 34+13 4+2 114

80 3111 3+2 99

" The aspect ratio was calculated by division of the average length by the average width.

(ii) Surface area measurements— N, sorption ontothe BNCusing
a surface area analyzer, e.g.,, Monosorb (Quantachrome
Instruments) is used to measure the total surface areas of
the fibers. The essential procedure is presented in detail:

- An aqueous suspension containing nanofibers is poured
into a test tube which is then quenched in liquid N, to
freeze the aqueous suspension, followed by freeze-drying.

- The dry fibers are kept at 100 °C for 20 min to evaporate
as much as possible water which is bound to the cellu-
lose nanofibers.

- The measurement is carried out at 77 K. The surface
areas are estimated from fitting of adsorption data to
the Brunauer, Emmett and Teller equation [80]. The
specific surface areas of the BNC are obtained by divid-
ing the surface areas with total weight of the nanofibers.

Crystalline structure of a single BNC after ACC [73] - It is well
known that BNC secreted by Gluconacetobacter xylinus is a com-
posite of the two crystalline phases, cellulose I and If (Io/If =
65/35) [81,82]. FTIR spectra for ACC treated BNC pellicles change
depending on Pass number.

The entire spectra indicate that the crystalline structure in
secreted BNC is made up of cellulose I. Namely, ACC treatment
does not transform it to other cellulose crystalline allomorphs
[72], e.g., cellulose II. However, it has been shown that the ratio
of cellulose Ia to total crystal phases in the native BNC decreases
with increasing Pass number. The two typical absorption bands
at 3270cm™' and 710 cm™! attributed to cellulose If phase
increased, whereas those at 3250 cm™! and 750 cm ™! attributed
to cellulose Io phase decreased with increasing in Pass number
[83,84].

In order to quantitatively investigate the ratios of cellulose Ia
to the total crystalline phases, CP/MAS *C NMR spectroscopy

was employed for the samples while systematically changing
Pass number. The crystallinity was also measured by X-ray
diffraction. The ratio of cellulose Io rapidly decreased from 80%
to 45% while increasing the Pass number from O to 40, followed
by a slow decrease from 45% to 38% at 80 Pass. In contrast, cel-
lulose If content increased from 20% to 55% in the range of 0-40
Pass with a further slow increase from 55% to 62% at 80 Pass.
During the crystalline transformation behavior, the total crys-
tallinity in BNC was not significantly changed and remained
constant at ca. 70% until 80 Pass. These behaviors may be attrib-
uted to two explanations:

(i) ACC treatment allows the cellulose Ia crystalline phase to
be transformed into cellulose 1B, which is supported by a
previous report showing that the If phase was thermody-
namically more stable than the Io phase [85].

(ii) The transformation from cellulose I« to If occurred on the
nanofiber surface. In other words, the shear stress due to
the collision energy of water at a high speed in ACC treat-
ment enhanced sliding of cellulose molecules in the cellu-
lose Io phase to be rearranged into cellulose I phase [73],
which was induced on the fiber surface.

A previous report by Yamamoto et al. [82] proposed that BNC
secreted by G. xylinus is composed of a core of If-rich domains
surrounded by a “skin layer” of cellulose Ia-rich domains. There-
fore, accompanied with the transformation of cellulose Ia to If in
the skin, proceeded by ACC treatment, the more stable cellulose
IB phase starts to cover the surface of the BNC. In the ACC-
treated BNC, the core of cellulose If surrounded by Ia is expected
to be surrounded by an outer skin of Ip at the end, resulting in
the outer layer protecting the internal cellulose Ia from the attack
of water jets during the treatment.

The ACC-treated BNC has average dimensions of 35 nm in
width and 4 pm in length and exhibits a high specific surface
area of about 55 m?/g compared to 12-13 m?/g for the corre-
sponding BNC network films. Therefore, it is possible that the
BNC has a high adsorptivity caused by the large specific surface
area. In addition, this new form of nanocellulose is likely to show
more resistance against chemical reagents and more insuscepti-
bility to enzymatic degradation caused by a surface covered with
stable Ip-rich crystalline phases [86], when compared with the
initial microbial cellulose pellicle. It is of interest to compare
the high specific surface area values for single BNC fibers with
those of CNFs and CNCs (having widths of less than 10 nm)
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which are about 200-500 m?/g. The fact that the unique
supramolecular 3D nanostructure is capable of holding a large
amount of active ingredients has opened the venue to extensive
activities in the development of nanocellulose-based controlled
drug delivery systems. Furthermore, it is expected that the single
BNC fibers can be applied as building blocks for functional food,
fine-patterning structures, coating reagents, and fillers for
composites.

BNC medical application

Surface modification

Surface properties play a vital role in the in vivo performance of
biomaterials [87-89]. Wettability, topography, chemistry, surface
charge, the presence of hydrophobic and hydrophilic domains,
density and conformation of functional groups all play a crucial
role in the cell-material interaction [90]. The control of cell adhe-
sion on the polymer substrate, and therefore the ability to guide
proliferation, migration, and differentiation is highly desirable
and a central issue in the development of scaffolds for tissue
engineering [91].

Biomolecule coating — The attachment of cells to biomedical
materials can be improved using adhesion molecules, present
in the extracellular matrix. A binding site present in many adhe-
sive proteins is the three amino acid sequence arginine-glycine-
aspartic acid (RGD), which binds integrin receptors on the cell
surface [92].

BNC is highly biocompatible in vivo but shows poor cell
adhesion [34]. This poor cell adhesion is undesirable in many
applications, such as e.g., in the replacement of small blood ves-
sels. In order to sustain cell adhesion to improve blood compat-
ibility, adhesive peptides have been introduced on the BNC
surface through different techniques. Bodin and colleagues [93]
reported a novel method to activate the BNC surface with the
RGD peptide using xyloglucan—-GRGDS (XG-GRGDS) conjugates.
Cell adsorption studies showed that adhesion of human
endothelial cells was enhanced when the BNC hydrogel was
modified with XG-GRGDS [94].

The RGD peptide was also used by Andrade et al., in this case
the adhesion peptides (RGD or GRGDY) were fused to a carbohy-
drate binding module with affinity to cellulose (CBM3) [95]. In
recent work, Andrade and colleagues [96] studied the blood com-
patibility of BNC treated with RGD-CBM protein. When
endothelial cells were cultured on RGD-treated BNC, a confluent
cell layer was formed and almost no platelets adhered to the
material. Thus, the improvement of BNC blood compatibility
through modification with adhesion peptides seems to be an
interesting strategy for the development of BNC vascular grafts.

To enhance the potential use of BNC for vascular tissue engi-
neering scaffolds, Wan and co-workers [97] developed hep-
arinized membranes. In their work, heparin was combined
with BNC during the growth of G. xylinus, by adding heparin
to the culture medium.

Chemical modification — Also aiming to improve cell adhesion,
Watanabe and co-workers [98] chemically modified BNC, with
the goal of introducing surface charged groups. In this context,
membranes of trimethyl ammonium betahydroxy propyl-BNC
(TMAHP-BNC), diethyl  aminoethyl-BNC  (DEAE-BNC),
aminoethyl-BNC (AE-BNC), and carboxymethyl-BNC (CM-

BNC) were produced. No morphological changes were observed
in either kind of membrane. The study showed that 1L.929 fibrob-
last cells grew better on the modified membranes in comparison
with the native ones, with TMAHP-BNC membrane being the
most suitable scaffold for cell growth.

Trauma and diseases of the bones and joints, frequently dam-
aging both the articular cartilage and the subchondral bone,
result in severe pain and disability for millions of people world-
wide [99]. In order to mimic the glucosaminoglycans of cartilage
tissue in vivo, Svensson et al. [100] added surface charges
through phosphorylation and sulfation on BNC matrices. The
compressive modulus of the phosphorylated samples increased
with the reaction time and improved compared to native BNC.
Sulfated-BNC had significantly lower Young’'s modulus than
unmodified BNC, resulting in a reduction of the mechanical
integrity. It was verified that BNC support cell ingrowth, and
chondrocytes preserved the differentiated phenotype. The
described types of chemically functionalized BNC represent
some of the first research results that demonstrate an improved
interaction of these BNC derivatives with cells. In order to use
functionalized BNC for tissue engineering applications, the syn-
thesis methods of these products needs to be optimized.

The modification of surfaces using plasma techniques is
becoming increasingly common in biomaterials engineering.
The most important advantage of plasma surface modifications
is the ability to selectively change the surface properties, without
altering the bulk attributes [87]. Pertile et al. [101] modified BNC
membranes with nitrogen plasma in order to enhance the cell-
material interactions through the incorporation of N-groups on
the surface. The results showed that different cell lines displayed
a different behavior in contact with modified biopolymers.
Bhanthumnavin et al. [102] recently reported that BNC surface
modification using O, plasma treatment led to a decrease in
the membrane effective pore area and the water flux. The treat-
ment yielded a change of the surface properties and hence a
more hydrophilic membrane.

BNC (and other nanocelluloses) are not enzymatically degrad-
able in the human body and as a consequence, biodegradability
has become an essential limiting factor in the application of BNC
as a scaffold material in tissue engineering. A limited degree of
periodate oxidation of polysaccharides may give rise to deriva-
tives with altered chemical and physical properties and most
importantly hydrolytic lability. Li and colleagues [103] produced
biodegradable 2,3-dialdehyde cellulose BNC by periodate oxi-
dization. While this chemical treatment maintained the original
3D nano-network structure, the obtained scaffold could degrade
rapidly in water, phosphate-buffered solution, and simulated
body fluids. In another study, Hutchens et al. [104] demon-
strated that periodate oxidized BNC retains its original structure
and ability to initiate the mineralization of calcium-deficient
hydroxyapatite, similar to natural bone apatite. Shim et al.
[105] recently reported the one-side modification of a BNC sheet
to reactive 2,3-dialdehyde derivatives (DABC), preferentially by
limited periodate oxidation.

Surface patterning — A powerful replica molding methodology
to transfer on-demand functional topographies to the surface
of BNC nanofiber textures was recently introduced by Bottan
et al. [106]. With this method, termed guided assembly-based
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biolithography (GAB), a surface-structured polydimethylsiloxane
(PDMS) mold is introduced at the gas-liquid interface of a G. xyli-
nus culture. Upon bacterial fermentation, the generated BNC
nanofibers are assembled in a three-dimensional network repro-
ducing the geometric shape imposed by the mold. Additionally,
GAB yields directional alignment of individual nanofibers and
memory of the transferred geometrical features upon dehydra-
tion and rehydration of the substrates. The deployment of
surface-structured BNC substrates in animal models as skin
wound dressings or body implants further proves the high dura-
bility and low inflammatory response to the material over a per-
iod of 21 days.

In vivo scaffolds

The need for BNC as in vivo scaffolds covers nearly all surgical
fields, from general surgery to neurosurgery to urology. There
are mainly two forms of BNC that are suitable for medical
implantation: the flat form which is used as a mesh, or a tube
for the repair of hollow organs or vessels. The tubular form is
especially promising to fill the gap between autologous and allo-
plastic materials.

Within the urinary tract, defects of the ureter, urinary bladder,
and the urethra are in some cases difficult to cure, especially if the
defect exceeds a certain size. A direct reconstruction often goes
along with strictures, which means scarred constrictions of the
uriniferous system. The best results using a BNC scaffold were
achieved when the matrix was seeded: Bodin et al. [107] seeded
3-D porous BNC scaffolds with either human urothelial and
smooth muscle cells or with urine-derived stem cells. This led to
the formation of a multilayered urothelium and cell-matrix infil-
tration. Lv et al. [108] used a BNC/gelatin composite scaffold
seeded with keratinocytes and muscle cells in a large animal
experiment (dogs), whereby the creation of a patent urethra was
observed. The use of a 3-D porous BNC scaffold seeded with lin-
gual keratinocytes was recently described by Huang et al. [109].
The 3-D seeded matrix showed significant advantages compared
to conventional BNC and un-seeded 3-D BNC in terms of stricture
formation. The 3-D scaffold and the seeded matrix were superior
in epithelial regeneration three months after implantation.

In vascular or heart surgery, the availability of a patent graft
for bypassing a closed vessel is essential. BNC might be a suitable
material as it was first described by Klemm et al. [52]. Herein, the
use of BNC as carotid interposition graft in a rat model showed
encouraging results regarding the patency. Wippermann et al.
[110] performed follow-up experiments in a large animal model
(domestic pigs), which showed an occlusion of the graft in one
pig due to a re-cellularization by endothelial cells. In a subse-
quent study, BNC grafts were implanted in ten carotid arteries
of sheep, but the patency rate was only 50% in this study. The
bursting strength of the grafts far exceeded the physiologic and
even pathologic possible blood pressure values of humans
[111]. Similar results were reported by Malm et al. [112] and Lei-
tdo et al. [113]. Promising results with excellent patency rates
were recently published by Li et al. [114], whereby the manufac-
turing process (rolled membrane) and the follow-up period (21
days) differed significantly from the other mentioned papers.

A duraplasty is often necessary after neurosurgical interven-
tions. In experimental studies, the use of BNC as a duraplasty

material was evaluated with excellent results in terms of
adhesions, infections, and the general inflammatory response
of the host [115,116]. Interestingly, a prospective, randomized,
multicenter clinical trial in neurosurgical patients showed three
and five years before, respectively, comparable results in humans
[28]. In comparison to a control group, BNC (in the original
publication named “biosynthesized cellulose graft”) was proven
to be non-inferior compared to commonly used dural replace-
ments. Of course, the histologic evaluation could only be per-
formed in animal experiments, in the human setting, the
patency was confirmed by evaluation of the wound healing
and radiologic examinations.

Thus, the aforementioned study describing the duraplasty
with BNC was an invasive application approach performed in
humans. There are some other uses already applied in humans:
a Brazilian study [117] continued the promising results of Kim
et al. [118] using BNC for tympanic membrane perforation.
The special approach of this clinical study was the application
in an infectious environment since only patients with tympanic
perforations after an otitis media were included. Significant
advantages for patients treated with BNC were the possibility
of local anesthesia, the significant decreased operation time,
and the tremendously reduced costs (as compared with the stan-
dard procedure, a temporal fascia graft). Similar results were
reported by Biskin et al. [119]. However, even if there is already
one randomized trial, the reported patient numbers are still too
low to judge BNC for this application.

Another application for BNC already performed in humans
is as wound dressings. Beside the treatment of burn wounds,
BNC was applied in chronic venous ulcers. There were no
infectious complications in the treatment group and, further-
more, less pain and an earlier withdrawal of analgesic medica-
tions [120].

Besides all aforementioned usages, BNC is used (experimen-
tally) as a scaffold in bone tissue engineering [121-123], cartilage
regeneration [124], laryngeal medialization [125], as a patch for
esophageal defect repair [126], and for closure of ventricular sep-
tal defects [127], among many others.

Due to the excellent characteristics of the material, it is versa-
tile and applicable and will play a major role in tissue engineer-
ing and regenerative medicine in the future.

As mentioned above, there are many medical fields that
would benefit from using BNC in humans. However, the market
for medical devices is highly competitive. BNC could be utilized
in many devices but has to compete with the individual leading
product in every application. There are two different modalities:
on the one hand the established use of a medical device, e.g., in
peripheral vascular surgery where a vascular prosthesis is com-
monly used, or in hernia repair where a mesh is frequently
implanted for the repair of the defect. In such cases, BNC has
to be benchmarked against the state of the art and has to prove
significant improvements. This process is long lasting and often
requires significant funding before a market launch can take
place. However, there are completely new fields where the
demand for a medical device is evident but has not been
achieved yet. This is the case in biliary or esophageal surgery,
for example. Here, it is more likely that BNC can quickly close
an existing gap between a medical problem and a solution.
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Recent developments in BNC materials

Food sector — In some applications, BNC shows potential to out-
perform the currently used celluloses in the food industry as a
promising novel hydrocolloid additive. Potential uses of BNC
in food technology, as an additive, include pourable and spoon-
able dressings, sauces, and gravies; frostings and icings; sour
cream and cultured dairy products; whipped toppings and aer-
ated desserts, and frozen dairy products. Its use is particularly rec-
ommended in situations where low use levels, lack of flavor
interactions, foam stabilization, and stability over wide pH
range, temperature, and freeze-thaw conditions are required.
The use of BNC in combination with other agents such as sucrose
and carboxymethyl-cellulose improves the dispersion of the
product. It is also a low-calorie additive, thickener, stabilizer,
and texture modifier [128-136].

The technical and dietetic properties of BNC are indis-
putable, and there is clearly potential for its use in food tech-
nology. However, BNC still has not been made available
commercially as a bulk product (especially in Western coun-
tries), nor has it been translated to actual products as a novel
food additive or ingredient. Strong competition with colloidal
microcrystalline cellulose and other commercially available cel-
lulose ethers and hydrocolloids makes the viability of such
developments further uncertain.

Biomedical sector — Further current developments in the BNC
field mainly concern novel carrier materials for cell cultivation
[122,137,138], encapsulation of cells/immobilization of enzymes
[139], coating of medical devices [140], and the production of
BNC materials using the well-known oxygen-transparent silicone
supports [141,142]. In case of medical implants a lot of results is
reported not only in the field of soft tissue implants (see Sec-
tion In vivo scaffolds) but also regarding materials for bone
regeneration [121,143,144].

The native BNC hydrogel is well suited for cell cultivation on
its surface. The ingrowth of cells into the bulk is limited by the
small size and heterogeneity of the pores. It has been shown that
laser-structured BNC hydrogels support ingrowth and differenti-
ation of chondrocytes and have potential as cartilage implants
[145]. Another novel bilayer BNC scaffold supports neocartilage
formation in vitro and in vivo. Bilayer BNC scaffolds, composed
of a dense BNC layer joined with a macroporous composite layer
of BNC and alginate, were seeded with human nasoseptal chon-
drocytes for reconstruction of auricular cartilage. This study
demonstrates that bilayer BNC scaffolds offer good mechanical
stability and maintain a structural integrity while providing a
porous architecture that supports cell ingrowth [124].

3D BNC-alginate composites were engineered by crosslinking
homogenized cellulose fibrils using alginate and freeze drying
the mixture to obtain a porous structure. In an initial pilot study,
the authors compared adipogenic differentiation of mice mes-
enchymal stem cells on 2D and 3D scaffolds of BNC. The study
showed that 3D culturing of adipocytes in BNC macroporous
scaffolds is a promising method for frabrication of adipose tissue
as an in vitro model for fabrication of adipose tissue and as an
in vitro model for adipose biology and metabolic disease [146].

Park et al. [147] modified the two sides of a BNC membrane
asymmetrically with different biomaterials for cell encapsula-

tion. One side was modified with collagen for the improvement
of cell adhesion and the other side was coated with alginate to
protect transplanted cells from immune rejection. Another kind
of cell encapsulation was investigated by Khorasani and Sho-
jaosadati [148] as novel protective prebiotic matrices. A suspen-
sion of BNC fibers, pectin, and Bacillus coagulans was
crosslinked and then coated with starch and carboxymethylcel-
lulose, respectively.

Using an in situ nanocellulose-coating technology based on
dynamic bacterial cultures, Zhang et al. [140] upgraded con-
ventional biomedical materials, i.e., medical cotton gauze or
other mesh materials. This fabric-reinforced BNC hydrogel
was equivalent in gel characteristics of native BNC, and exhib-
ited a qualitative improvement with regard to its mechanical
properties.

Technical sector — Especially for technical applications such as
fuel cells, (transparent) electrically conductive membranes, and
loudspeaker vibration films, there has been extensive R&D on
BNC composites over the past years [10]. Recent results focus
on applications in the area of packaging [149,150], water absorp-
tion [151] and supercapacitors [152,153], as well as optical
devices [154-160]. In such applications, either BNC itself is rein-
forced by additives [161-164] or BNC serves as the reinforcing
material, e.g., for synthetic polymers [165,166]. Another aim of
current research is the enhancement of BNC properties to get
softer and more flexible materials [167].

The pyrolyzation of BNC at temperatures ranging from 800 to
1500 °C leads to a carbon material with a fibrous structure and a
moderately high specific surface area. Kalytta-Mewes et al. [168]
tested the use of pyrolyzed BNC as a catalyst support by in situ
preparation of nanosized ruthenium clusters. As a preliminary
test for the catalytic properties of the material, the low-pressure
reduction of carbon monoxide by hydrogen gas was successfully
demonstrated.

Recently, Dutta and colleagues published an overview about
research activities in cellulose-based energy storage devices
[169]. Among the most promising developments highlighted in
the review were stretchable 3D conductive carbon nanofiber net-
works based on multi-walled carbon nanotubes (MWCNT) incor-
porated into BNC pellicles, first described by Yoon et al. [170].
One of the latest developments in this very promising field of
research are conductive nanocomposite BNC-membranes, which
contain polyaniline and highly dispersed graphene (GE) [171].
The authors reported excellent electrochemical performance of
the BNC/GE/PANI electrodes and explained their findings with
the unique 3D porous structure and the uniform distribution
of GE nanosheets and PANI in the BNC matrix, which makes it
especially promising for future flexible energy storage devices.

Over the last decade, BNC has been explored for its use in
water purification systems. A patented method describes the
preparation of a composite of BNC loaded with a porous adsor-
bent for flocculation and decolorization of dyeing wastewater
[172]. BNC grafted by allylamine and acrylic acid was described
as an adsorbent for persistent pollutants containing Cu?*, Pb**,
Cd?* and Cr(VI) [173]. The symbiotic culture of white-rot fungi
and aerobic denitrifier bacteria immobilized by bacterial cellulose
was reported as suitable for the treatment of mixed wastewater
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composed of dye and domestic sewage. The removal rates proved
to be of about 80% [174,175].

Nanocelluloses from wood

In this chapter, the focus is on recent developments in the pro-
cessing and manufacturing of CNFs from wood materials, some
new characterization methods and an outlook on the mechani-
cal properties of nanofilms, filaments, and composites. Reference
to some earlier reviews can be found in [10,176-178].

Processing and manufacture of CNFs

Nanocellulose materials from wood are most commonly manu-
factured from delignified and preferably bleached pulps. The
original inventors [179,180] of what was then called microfibril-
lar cellulose successfully used high-pressure homogenizers for
mechanical delamination of the fibers, but recognized that the
energy consumption was very high and that extensive clogging
of the homogenizers took place, particularly when feeding pulp
with a high consistency through the homogenizer.

Since then, several different delamination equipments have
been used, such as high pressure homogenizers or microfluidiz-
ers, common refiners, ball milling, steam explosion, ultrasonifi-
cation, high speed blenders etc. and there are many recent
reviews on the various mechanical delamination equipments
available [181-186]. A serious obstacle has been the low solid
content required to avoid clogging in homogenizers/ microflu-
idizers, and a recent development addressing this is the use of
extruders for fiber delamination [187-190] or high consistency
milling [191-194]. These methods have the advantage of higher
consistency processing, but they seem to be more energy
demanding and it is difficult to avoid the presence of larger frag-
ments in the delaminated fiber assembly. Hence, all types of
equipment have advantages and disadvantages and it is obvious
that the delamination equipment of choice must be tailored to
the final end use of the CNFs.

The impediments of the high energy consumption and the
clogging tendency of interaction chambers in high pressure
homogenizers/microfluidizers have been alleviated by the use
of various pre-treatment methods, which have been necessary
for commercial exploitation of CNF production.

The pre-treatment methods may be categorized as:

A. Electrostatically induced swelling by charged groups,
induced either by pulping or bleaching procedures or by
subjecting fibers to oxidative treatments, such as TEMPO-
oxidation (oxidation by 2,2,6,6-tetramethylpiperidiny
loxyl) or cellulose modification by introduction of charged
groups, e.g., carboxymethylation.

B. Mild acid or enzymatic treatments.

Electrostatically induced swelling of the cell wall or hydrolysis
will decrease cell wall cohesion and alleviate the energy use dur-
ing delamination. Clogging is related to the susceptibility of
fibers to flocculate at the inlet to the interaction chambers.

The native cell wall of wood fibers contains few charged
groups, but during pulping, charged groups are introduced when
esters are cleaved in the hemicellulose fraction, whereas charges
are introduced in the lignin fraction due to disproportionation

reactions. It has long been known that the introduced charges
will have a strong influence on the cell wall cohesion
[195,196], as determined by the swelling behavior of wood-
based fibers.

Among the successful pre-treatment methods to decrease the
cell wall cohesion are enzymatic treatment [197,198], TEMPO-
oxidation [177,199] and carboxymethylation [200], but there
are a number of emerging technologies, based on increasing
the charge of fibers, such as phosphorylation [201], sulfonation
[202], periodate-chlorite oxidation [203,204], cationization
[205], and carboxymethyl cellulose grafting [206]. Different
applications of CNF have different demands particularly with
respect to the extent of fiber delamination. In large-scale paper
making applications (e.g., as a wet end strength additive), the
economics of production is most important and the extent of
delamination is not critical, so an enzymatic pretreatment is suf-
ficient to fulfill the demands, whereas in electronic and nanofil-
ter applications, transparency and nanofibril uniformity is
critical, demanding an extensive chemical modification. These
are examples of low- and high-end applications, respectively.

Whereas fiber charge content by cooking and bleaching is
limited to 30-250 peq/g, the charge content after a second charg-
ing treatment can be increased to 300-2000 peq/g [207]. As indi-
cated above the charge treatment will drastically decrease the
energy required for disintegration as illustrated in Fig. 8 [204].

The charge content is not only important for cell wall cohe-
sion, but has also a significant impact on the extent of fiber floc-
culation, which controls the clogging tendency of fibers.

The tendency of fibers to flocculate may be understood by the
crowding factor concept developed by Kerekes and co-workers
[208]. The crowding factor is defined in terms of the number of
fibers in a conceived volume and the higher the N-number the
higher the susceptibility for fibers to flocculate. The equation
reads:

N=5Cpl*/o (1

where Cp, is the mass consistency, L is the fiber length, and o is the
fiber coarseness. This equation is intuitively simple to grasp, as long
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FIGURE 8

The effect of charge content on the estimated energy consumption for
desintegration of cellulose fibers into nanofibrils [204].
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fibers, higher consistency, and lower coarseness increase the tendency
of fibers to flocculate.

The friction between fibers is, however, not included in this
concept, the impact of which was later realized by Kerekes. The
friction between fibers is also controlled by the electrostatic
repulsion between fibers and the higher the repulsion, the less
surface contact there is and thus the lower the friction will be.
The effects of the friction on the rheology of fiber suspensions
have also been demonstrated [209,210].

Characterization of CNF materials

The efficiency of the fiber delamination process may be charac-
terized by a set of different means for morphology studies, such
as TEM, field-emission SEM (FE-SEM), atomic force microscopy
(AFM), SEM, which are all useful for the determination of width
and length distributions of CNFs. Solid state '*C cross polariza-
tion magic angle spinning nuclear magnetic resonance (CP-
MAS NMR) and wide-angle X-ray scattering (WAXS) are also tools
for width and crystallinity determinations. Whereas, the width
and length distributions of TEMPO-oxidized nanomaterials can
be deduced with reasonable accuracy [211], less delaminated
CNF materials are much more difficult to analyze.

These examples are all excellent characterization devices, but
what are needed are also fast and easy characterization tools that
can be used for quality control during industrial manufacturing
of CNFs.

Turbidity measurements have been used by many investiga-
tors as a fast and rapid tool for the evaluation of CNF quality,
and it has recently been shown by a Japanese team [212] that
quantitative thickness dimensions can be calculated from turbid-
ity measurements based on the theory of light scattering of thin
and long particles, that is from first principles. Fig. 9 [212] shows
how the turbidity derived width of fibers fits the AFM-measured
thickness for a wide range of CNFs.

Another simple method, centrifugation, has been used by sev-
eral research teams [213-215] to estimate the fraction of nano-
material content in CNF preparations. The idea is to disperse
the CNFs under conditions of colloidal stability, which usually
requires charged systems at a low electrolyte concentration.
Fig. 10 [213] shows how the nanofiber yield increases with the
carboxyl group content for a series of TEMPO-oxidized samples.

Different groups do, however, not employ the same protocol
with respect to gravity or time of centrifugation, and there has
not been an independent calibration of the methodology. The
solid content during centrifugation is critical as the solid content
must be lower than the critical networking concentration [216].

Rheology of CNF materials

The rheological features and the application of CNF materials in
various food applications was first investigated by the inventors
of CNF at ITT Rayonier Eastern Division in USA in the late
1970s [180]. As described above, cellulose and its derivatives have
been used as emulsifiers and rheological modifiers for a long time
in the food industry and cellulose ethers and microcrystalline
cellulose made from plant cellulose are widely accepted as
approved food additives [217]. As such, the use of CNF in food
is not unexpected, and has been found to be an excellent addi-
tive for oil/water emulsions and many patents exist on the use
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Relationship between turbidity-derived width, with the AFM-measured
thickness [212].
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The effect of carboxyl content on the nanofibrils yield using a set of TEMPO-
oxidized derived catalysts [213].

of CNF in whipped toppings, cake frostings, dressings, gravies,
and sauces. The use of vegetable nanocellulose in food applica-
tions was also recently reviewed [218].

CNF materials have complex rheology, showing both shear-
thinning and thixotropic properties, and these rheological prop-
erties are useful for the characterization of the materials. There is,
however, a lack of universally accepted protocols for this type of
characterization, which is a problem when comparing results
from different research groups. Additionally many CNF materials
are inherently unstable, and require specific protocols [219,220].
Hence, Naderi and Lindstrom [221] stressed that pre-shearing is a
pre-requisite for obtaining reproducible results for unstable CNF
materials. Nechyporchuk et al. [222] showed the importance of
having serrated geometries, instead of smooth geometries as a
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mean of avoiding slip effects. The same group also showed that
by combining rheology measurements with visualization
devices, shear banding phenomena could be observed at certain
shear rates for uncharged systems such as enzymatically treated
CNFs. Moreover, by combining rheology with optical coherence
spectroscopy [223,224] or ultrasonic speckle velocimetry [225]
the instabilities of uncharged CNF materials could also be
demonstrated. The latter group compared the behavior of
TEMPO-oxidized CNFs and enzymatically treated CNF material,
both of which showed complex rheology, typical for the yield
stress of non-linear thixotropic fluids. The optical observations
revealed that enzymatic CNFs exhibited flocculated textures,
which evolved with the applied macroscopic shear rate and
sweep history. For the TEMPO-CNF dispersions, the spatiotem-
poral velocity diagrams were very different from those of enzy-
matic CNFs. Both velocity fields were heterogenous, but the
spatial and temporal variations were much smoother and less
erratic for the TEMPO-CNFs compared to the enzymatic CNFs.

The flocculation of CNF systems can be decreased by the addi-
tion of polymers, which may have steric stabilizing effects if
adsorbed, but may also enhance the viscosity, thus reducing
the relative motion of fibers or prevent collisions and contacts
between the filaments if the polymer is not adsorbed [226].

In spite of the complex rheology of CNF materials, the rheo-
logical properties are useful for the practitioner. The rheological
characteristics of CNF materials are strongly dependent on the
solid content, usually in an exponential fashion. Typical rheo-
logical characteristics are shown in Fig. 11 [227], where the graph
to the left, Fig. 11a) shows the shear viscosity versus shear rate of
CNF dispersions (carboxymethylated) with different dry con-
tents. To the right, Fig. 11b) shows the power-law evolution of
the shear viscosity as a function of CNF consistency [227]. The
exponent (B) in the power law is 2.0.

As early as 2002, the group of Tatsumi et al. [228] reported an
exponential value (B) around 2.0 for the evolution of the shear
stress versus solid concentration of CNFs for a non-charged sys-
tem. The same exponent has also been reported for TEMPO-
oxidized CNFs [229] and for carboxymethyl cellulose grafted
CNFs [230]. These results show a strong coherence, in spite of
the fact that both non-charged unstable systems and charged
stable CNF systems show the same exponent.

The evolution of the storage modulus (G’) is also dependent
on the solid content in an exponential manner. Theoretical con-
siderations suggest that for entangled semiflexible polymer sys-
tems, the exponential coefficient («) should be around 2.2
[231], which was exactly what Tatsumi et al. [228] reported.
The exponent « in the work by Naderi and Lindstrém [227] on
the rheology of carboxymethylated CNFs was found to be 2.4.
There are also reports of higher values such as for enzymatically
liberated CNF material [198], where a value around 3.0 was
obtained for uncharged CNF material [232]. Naderi [220] specu-
lated that the inclusion of data close to the critical network con-
centration or incorrect selection of CNF suspensions (in the
fitting process) as possible causes for these discrepancies.

Charged CNF systems are obviously sensitive to charge inter-
actions and their rheology is sensitive to electrolytes and pH.
Jowkaderis and van de Ven [233] studied the intrinsic viscosity
of TEMPO-oxidized CNFs at low solid concentrations and found

that the intrinsic viscosity first decreased with the addition of
electrolyte. This is due to the compression of the electrostatic
double layer, before approaching the intrinsic coagulation
threshold, when the viscosity starts to increase again. Similarly,
a higher pH increased the viscosity. Rheological studies have also
come to the same results that the viscosity and (G'/G”) decrease
with an increased electrolyte concentration [227]. It has also
been found that multivalent cations induce hydrogelation in car-
boxylated CNF materials, with a higher valency resulting in
lower gelation concentration [234].

Outlook on the mechanical properties of CNF nanofilms,
filaments, and composites

The deduction of bulk material properties from fiber/filament
properties is generally difficult, particularly for brittle materials,
such as CNFs. This is due to the statistical distribution of surface
defects, internal stresses etc. The smaller the material entities, the
less likely it is to find a defect of given critical size. As CNF mate-
rials are far from mature materials, it is understandable that such
effects have been given little attention. The importance of such
factors is, however, well recognized by the papermaking commu-
nity in formation of paper sheets, internal stresses, fiber kinks
etc.

It is therefore of importance to investigate the maximum
strength and stiffness of nanofilms and filaments that have been
reported. CNFs have a modulus of around 30 Gpa [235] and an
ultimate tensile strength around 1 Gpa [236] at ambient condi-
tions, although there are publications with higher values. In a
recent review of CNF film properties Lindstrom reviewed pub-
lished nanofilm data [207] and found that the maximum modu-
lus values were between 8 and 11 Gpa. If the Cox equation [237]
is used (Eqim = Eaprii/3) the fit between these experimental values
is as perfect as it may be.

This approach, however, does not apply to all literature values
since it is known that insufficient fiber delamination or the
absence of appropriate pre-treatments before delamination will
invariably lead to inferior mechanical properties of nanofilms.
Likewise, a chemical or mechanical pre-treatment of fibers,
which decreases the DP below a threshold value or the choice
of a low DP material, will be out of the scope of this analysis.

It is well recognized that nanofilms share many features sim-
ilar to paper structures, albeit at different structural levels. Histor-
ically, the Page equation [238] was the golden standard for paper
strength theories, but suffered from the fact that it was extremely
difficult to obtain accurate measurements of the fiber-fiber bond
strength. As the shear strength can be measured with excellent
accuracy, the validity of the Page equation has now also been
verified from first principles [239]. The Page theoretical frame-
work has now also been extended to nanopapers [207] and by
extrapolation of the surface area to zero, the Page equation pre-
dicts a value of 172 Nm/g (=260 Mpa). This also equals the short
span strength of a paper made from the fibers that the nanopaper
was made from. It is, however, important to understand that
well-delaminated CNF films are non-porous and that the density
is equal to the density of cellulose [177,240], otherwise, this
extrapolation cannot be done. The reviewed literature values
points to a maximum tensile strength generally ranging from
165-185 Nm/g (~250-280 Mpa) which is in good agreement
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(a) Shear viscosity versus shear rate of CNF dispersions with different dry contents. (b) The power-law evolution of the shear viscosity as a function of

nanocellulose consistency [227].

with the theoretical prediction. Enzymaticallytreated, car-
boxymethylated and TEMPO-oxidized cellulose all have maxi-
mum tensile strength properties in this range. Hence, there is
no influence of the pre-treatment procedure if the CNF materials
are sufficiently delaminated or if the CNFs are treated in a fash-
ion to yield very low degrees of polymerization. It is not entirely
correct to use the Fox scaling model for tensile properties, but if
used, these experimental values are not too far from 1 Gpa.

For some time attempts have been made to wet-spin CNF
materials [241-243].This is a particularly challenging exercise
due to the low solid contents during spinning and the presence
of fiber fragments inducing filament defects. Of particular inter-
est has been the development of a completely new flow focusing
spinning technology [243], with which a very high alignment of
the nanofibrils can be obtained. Using a carboxymethylated CNF
dispersion, the same group has been able to reach a CNF modu-
lus of 53 Gpa and a tensile strength of 830 Mpa [244], which is
quite close to the suggested strength of nanofibrils at 1 Gpa.

From the referred papers, the outlook is that property predic-
tions of CNF films and filaments can be made from some fairly
simple considerations and can be experimentally verified.

In spite of being strong, these CNF films and filaments still
have deficits (e.g., water removal, economics, etc.) for large-scale
manufacturing and they are brittle materials.

CNF films and filaments have a fairly low strain to failure, usu-
ally in the range between 3 and 8%. Moisture is an efficient plas-
ticizer for cellulose, but the tensile strength drops significantly
with increased humidity and nanocellulose films lose their integ-
rity at high moisture contents [245]. The sensitivity of CNF mate-
rials to water can, however, be much improved by cross-linking
with multivalent cations, provided that there is a sufficient
amount of charges on the CNFs [246].

If nanopapers are compared to common paper materials,
there are several ways to enhance the strain to failure for paper.
The strain to failure for paper increases with an increased shrink-
age of the paper. The shrinkage on a fiber scale is governed by the
transversal shrinkage of the fibers leading to fiber microcompres-
sions, which is governed by the fiber swelling [247,248]. As cellu-
lose with a high crystallinity does not swell in a significant

manner, this mechanism is not available for the consolidation
of nanopapers. Instead, alternative routes must be explored, such
as composite formulations.

The current interest in nanocomposites is soaring, and the
same goes for CNF composites. There is an extensive number
of reviews in the area of CNFs (and nanocelluloses, more gener-
ally) many of which come from the Dufresne group [249-254].
Scientists agree with the notion that one great challenge with
CNF composites is the dispersion of the CNF filaments in the
matrix, particularly for olefinic matrix materials. As it is also
known that the mechanism for reinforcement is percolation
and as dispersion usually requires some kind of dispersant, the
interaction between the reinforcing filaments is being blocked.
Hence, dispersion may contradict the percolation ability.

To date, most success has been achieved using polysaccha-
rides to enhance the toughness of nanofilms [255,256]. In an
interesting approach by the group of Walther [257], matrix mate-
rials were studied based on a series of non-ionic polymers with
various Ty values. They found that an optimum toughness of
the composite was obtained when the T of the matrix was equal
to the service temperature. This may serve as an interesting
guideline for future studies of cellulose-based nanocomposite
materials.

In general BNC would be superior to CNF from a reinforce-
ment perspective. This is because BNC is stronger than CNF
due to its wider, longer, and more crystalline microfibrils and
CNF materials often have weak links due to harsh processing.
The processing of BNC may, however, be very problematic in
many composite applications because of the dispersion problems
associated with long strands, unless they are cut into shorter
sizes. There has, however, to our knowledge not been any suc-
cessful report on the dispersion of BNC in engineering composite
materials.

There is a broad palette of engineering applications of CNF
materials including composite materials for the automotive,
building (cement and plastic reinforcement), packaging (coat-
ings, films, paper and filler reinforcement) sector, air and water
filtration. Reinforcement of paper/board can be considered as
the most mature sector. Many applications have been listed in
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publications by the United States Department of Agriculture’s
Forest Service, Forest Products Laboratory Lab., Madison, Wi,
USA [258,259].

Although this review cannot cover all different applications of
CNF materials, the reader should be aware of that there are con-
siderable recent research efforts in the fields of energy harvesting,
electronic applications, and water purification efforts, as
described above for BNC. These efforts are driven by environ-
mental issues related to greenhouse gas emissions, embodied
energy, toxicity, and the fact that sustainability of materials are
becoming much more important to our society.

In the energy field [260], the focus is on energy storage devices
such as lithium ion batteries, supercapacitors, and solar cells
[261,262] The combination of low surface roughness, trans-
parency, low thermal expansion, and strong mechanical proper-
ties are desirable in CNF materials making them suitable for
various electronic smart materials, sensors, and various electronic
devices in printed electronics [263].

It has been recognized that CNF materials have a great-
untapped potential in various water treatment technologies. This
is basically due to their high specific surface area, high strength
and ease of functionalization and environmental friendliness.
CNF has been used in various nano remediation technologies,
such as contaminant adsorbents for metal ions, scaffolds, and
membranes for water filtration [264-266]. Progress has been
made in the manufacture of thin-film nanofibrous composite
membranes, where CNF is employed as the top layer in asym-
metric composite structures [267]. A highlight recently was a
concept with directed water-channels, which was found to be a
key to achieving high water permeability without sacrificing
rejection [268]. Another interesting field is the finding of the
anomalous scaling law of strength and toughness of cellulose
nanopaper. Surprisingly, both the strength and toughness of cel-
lulose nanopaper increase simultaneously as the size of the con-
stituent cellulose fibers decreases: the smaller, the stronger, and
the tougher [269].

Cellulose nanocrystals: the whisker-like nanocellulose
General production routes and sources of CNCs

The isolation of cellulose nanocrystals (CNCs) from wood pulp
and cotton via acid hydrolysis was first reported in the 1940s
and the particles were termed crystallites and cellulose micelles
[270-272]. Since then, these colloidal “whisker-like” particles
(Fig. 12) have been thoroughly studied and their industrial pro-
duction scaled up, paving the way for commercial products to fill
both commodity and niche applications. Many excellent review
articles [11,178,273,274] and books [249,275] on CNCs have
been published and the scientific and patent literature continues
to grow exponentially (Fig. 13).

CNCs are considered an emerging nanomaterial based on
their commercial production [276] and their potential to solve
new and existing materials problems. New ISO, TAPPI, and
CSA Standards on CNCs are being developed and published, fur-
ther highlighting the market interest [27,277]. Many of the
potential “nano-enabled” CNC materials have yet to be envi-
sioned in their entirety and it is this need for innovation as well
as fundamental science that has captured the imagination of aca-

demics and industry alike. Compared with other nanocelluloses,
CNCs stand out due to their rigid structure, strength, amphiphi-
lic nature, chemical purity, optical properties, ability to be com-
pletely redispersed from dried powder [278] and perhaps above
all, the fact that they can be uniformly and reproducibly pro-
duced (as shown through recent benchmarking studies [279]).
Additionally, CNC suspensions are “all nano” — CNCs from most
plant sources have cross-sections of 5-10 nm and lengths of 100—
200 nm [11] and while polydispersity is expected for particles
derived from natural materials, the size distribution is narrow
compared to the mixtures of nano and micro fibrils found in
CNFs or the mats/fibril bundles produced by bacteria.

Sulfuric acid is the most commonly used acid for the isolation
of CNCs and grafts sulfate half ester groups on the CNC surface,
imparting a negative surface charge and colloidal stability in
water [280]. This colloidal stability is noteworthy as it allows
for easy processing in water without the need to dissolve cellu-
lose (which requires uncommon solvents [281]) or chemical
derivatization. The charged surface groups are grafted through
the one-step hydrolysis process as opposed to CNF, which needs
separate chemical treatment steps to achieve similar surface
charge densities (i.e., 100-400 mmol/kg). The sulfuric acid
hydrolysis process has been optimized extensively in the litera-
ture [25,282-286]; acid concentration, hydrolysis time, and tem-
perature have the most significant effects on CNC properties and
yield. Slight changes in hydrolysis temperature have furthermore
been shown to affect surface bound oligosaccharides which
affect CNC rheology and liquid crystalline tendencies [287].
While it is well understood that acid preferentially degrades more
accessible/disordered cellulose leaving the highly crystalline
CNC whiskers intact, there remains debate about the distribution

Tapping mode AFM height image showing the whisker-like shape of
cellulose nanocrystals extracted from wood pulp via sulfuric acid hydrolysis.
CNCs were spin coated onto a silicon wafer substrate.
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FIGURE 13

Annual cellulose nanocrystal publications (red) and patent applications
(blue stripes) from 1998 to 2017 (compiled August 2017). Publication and
patent searches were conducted using Web of Science and Patsnap
databases, respectively, using the synonyms: cellulose nanocrystal, cellulose
nanowhisker, and nanocrystalline cellulose.

of ordered and disordered cellulose domains [21]. Importantly,
the industrial production of CNCs is a relatively green process,
as the starting material is renewable, the acid can be recycled,
and the degraded sugars may be separated for biofuel production.

Newer methods to isolate CNCs include oxidation [288] and
hydrolysis with other acids such as hydrochloric [289], hydro-
bromic [290], citric [291], phosphoric [292], oxalic, and maleic
acid [293]. The choice of acid directly affects the colloidal and
thermal stability, size, and surface charge of the CNCs. For exam-
ple, phosphoric and hydrochloric acid hydrolyses yield CNCs
with low or no charge content and the CNCs are typically aggre-
gated but have higher thermal stability [292]. It is therefore
important to optimize reaction conditions for each isolation pro-
cedure in order to ensure that stable and predictable nanomate-
rials are prepared.

The most common feedstocks for CNCs are wood pulp and
cotton [282], however, other sources such as algae [294], bacteria
[295], and tunicate [296] may be used. Cellulose source affects
dimensions, surface activity, and self-assembly properties, there-
fore a thorough characterization of CNC starting material is rec-
ommended. Recently, new sources of CNCs have been reported
including pineapple [297], coconut husk [298], bamboo [299],
rice husk [300], banana pseudostems [301], and Miscanthus x.
Giganteus plants [302], whereby producing CNCs from fast-grow-
ing crops and agricultural waste may improve their carbon foot-
print even further.

CNC properties and performance

Like other nanocelluloses, CNCs have an abundance of hydroxyl
groups on their surface that are amenable to surface modifica-
tion. Polymer grafting, small molecule functionalization, and

adsorption may be used to alter their chemical functionality/-
compatibility, colloidal stability, responsive behavior, and
hydrogen bonding capacity [303]. A general overview of com-
mon surface modification reactions for CNCs is shown in
Fig. 14 [304]. For example, CNCs with responsive polymers have
been demonstrated as flocculating agents [305-307] and emul-
sion stabilizers/breakers [308] and the potential for other water
treatment technologies with CNCs has recently been reviewed
[264]. Additionally, CNCs as supports for catalysts [309], antimi-
crobial agents [310], and metal and luminescent nanoparticles
[311-314] is another quickly growing topic in the literature.
Interestingly, CNCs are amphiphilic due to the polymer chain
packing in their crystalline structure [315] which results in a
hydrophobic edge void of hydroxyl groups. This makes CNCs
ideal as Pickering stabilizers in emulsions; oil-in-water [316],
water-in-oil [317], double [318] and water-in-water emulsions
[319], emulsion gels [320], dried oil powders [321], emulsion
polymerized latexes [322,323] and aqueous foams [324] have
recently been reported. As such, both the inherent chemical
properties of CNCs and the ease of chemical modification con-
tribute to the large range of anticipated applications.

The diameter and length (and therefore the aspect ratio) of
CNCs are smaller than other nanocelluloses. This affects their
rheological [325] and interface stabilizing behaviors [326], pack-
ing density [327], and mechanical reinforcement abilities [328].
So while CNCs are better at reproducibly controlling rheology
or stabilizing emulsions compared to other nanocelluloses, they
are inferior in gel and composite applications (or at least more
material is needed to obtain similar results to CNFs, for example).
CNCs form a gel at much higher concentrations than other
nanocelluloses since they lack the length and flexibility needed
to entangle [329], and the percolation threshold to reinforce
composites is significantly higher than for higher aspect ratio
particles [178]. To overcome the short aspect ratio of CNCs,
researchers have recently looked at crosslinking CNCs to form
“stable entanglements” [330] as well as optimizing hydrolysis
conditions to produce higher aspect ratio nanoparticles, with
30 being the highest aspect ratio reported for sulfuric acid hydro-
lyzed CNCs [282].

The optical birefringence and tendency for CNCs to form lyo-
tropic chiral nematic liquid crystals, which offer bright iridescent
materials when dried, suggests potential applications in security
papers, pigments and biosensors (Fig. 15a and b) [331]. Gray and
coworkers have extensively studied the effect of CNC properties
on their ability to self-assemble [332-334]; while most colloidally
stable CNCs will adopt this helicoidal structure, the pitch and
resulting optical properties are highly tailorable [331]. The irides-
cence of dried CNC films has spurred research thrusts around the
world with the most notable work by MacLachlan and coworkers
who used CNC films to template a new family of functional chi-
ral organic, inorganic, conductive, mesoporous and hydrogel-
based materials, such as those shown in Fig. 15c¢ [335,336]. Addi-
tionally, the drying of confined liquid crystalline droplets of
CNC:s has provided significant physical insight into nanoparticle
self-assembly phenomena [337-340].

The rigid, crystalline nature of CNCs results in a nanoparticle
with a specific Young’s modulus similar to Kevlar® and steel
[178,274]. This mechanical strength arises from the high degree
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Schematic showing common surface modification reactions of cellulose nanocrystals (termed “CN” in the figure). Reproduced from Ref. [304] with permission
from RSC Publishing.

of order and intermolecular hydrogen bonding between cellulose The molecular order within CNC particles not only gives
chains [251]. While past work has failed to fully exploit the them high mechanical strength but also imparts a giant perma-
mechanical strength of CNCs (and other nanocelluloses) in com- nent electric dipole moment [347] and a significant diamagnetic
posites, recent examples have approached the theoretical limits. susceptibility [348]. Based on this, assembly of ordered CNC
Some advances have come through better processing routes, as materials is readily achievable, often over short time periods
well as improved compatibility of hydrophilic CNCs with gener- and using weak electromagnetic fields, i.e., perfect orientation

ally hydrophobic matrices: examples with notable mechanical/ in under 200 min in a 0.5 T magnetic field [349-351]. This opens
performance enhancements include polymer nanocomposites/ new possibilities for aligned composites, materials with direc-
membranes with modified CNCs [341-344| and cements where tionally dependent physical properties, and for example, aligned
CNCs are colloidally stable prior to their incorporation due to scaffolds that may direct cell growth in tissue engineering
the processing which takes place in water [345,346]. applications [352-354]. Although CNCs themselves are
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@ CNC suspension

(b) Optical properties
: Templating

hiral Megoporous TiO;

v

(a) Formation of a chiral nematic liquid crystal phase and its coexistence with an isotropic phase in a CNC suspension at 5 wt.% (upper), with the helical
arrangement of nanorods illustrated next to a scanning electron microscopy image of an actual CNC helix (lower). (b) The iridescence revealing the photonic
crystal character of the film. (c) Templating of the CNC-derived helical structure into inorganic titanium dioxide. Reproduced from Ref. [331] with permission

from Nature Publishing Group.

non-conductive, considerable work combining them with con-
ductive/capacitive polymers and nanoparticles, or carbonizing
them to induce conductivity has led to a range of flexible energy
storage devices and sensors and is a research area that continues
to grow [355-357].

Upcoming industrial applications for CNCs

While many of the applications described above remain at the
bench scale, the current industrial production of sulfuric acid
hydrolyzed CNCs by CelluForce, the USDA’s Forest Products
Lab, Melodea/Holmen, InnoTech Alberta, FPInnovations and
Cellulose Lab (in order of highest to lowest approximate produc-
tion capacity) shows promise for the widespread use of CNCs in
commercial applications. At the 2017 TAPPI Nanotechnology
conference in Montreal, Canada many researchers, producers,
and end users gathered to discuss the state of the art in nanocel-
lulose advancements. In a panel discussion, end users high-
lighted the properties that make CNCs unique compared to
other nanomaterials like silica, carbon black and clays: size and
chemical uniformity, lightweight, large-scale availability and pro-
duct uniformity, simple incorporation (i.e., surface modification
for many applications is unnecessary), additionally CNCs can be
added incrementally or as hybrid solutions in existing products.
Some of the emergent industrial applications are summarized
below. Notably, many of these applications remain at small
scales, however a few emerging products have moved into field
or product testing.

Oil and gas — The use of CNCs in the oil and gas industry may
include cements, stimulation, drilling, completion and spacer
fluids where CNCs could act as stabilizers, thickeners, shear thin-
ning agents, proppants, or reinforcing agents. Results from the
first large (i.e., ton scale) industrial testing of a CNC product
was recently presented by Schlumberger at the TAPPI Nano

conference [358]. The promising report showed that using CNCs
in conventional gravel pack fluids prevented the settling of said
fluids due to interactions between the CNCs and surfactants pre-
sent [358]. The thermal stability of CNCs and their rheological
properties are key aspects for their use in oil and gas applications
and are being extensively studied [359-361].

Cosmetics, pharmaceutical, food, packaging, environmental and
biomedical applications — The interface stabilizing ability, chemi-
cal inertness, and non-toxicity extend the potential of CNCs to
cosmetic, pharmaceutical, and food grade formulated products,
although further regulatory testing is still necessary. Demon-
strated biomedical applications include drug delivery, tissue
engineering, biosensors, and bioadhesives [310,362]. Contrary
to BNC, CNC:s are not “pure” cellulose — they contain surface sul-
fate half ester groups that make up <1% of CNCs by mass and
impart important properties such as colloidal stability and func-
tional handles for chemical modification. Despite this difference,
a recent review by Roman [362] summarizes the non-toxicity of
sulfated CNCs in all studies shown to date.

Recent investigations have reported details of the non-
toxicity of CNCs in different cytotoxicity and hemotoxicity
testings. The excellent biocompatibility might be related to
the negative surface charge of the CNCs which hinders the
binding between CNCs and cell membranes due to electro-
static repulsion [363]. This cell compatibility contrasts other
elongated, rod- or tube-like nanomaterials such as silica or
carbon nanotubes [364,365]. To simulate the in vivo situa-
tion more closely, CNCs were additionally tested in an ex
ovo shell-less hen’s egg model [366] to study their biocom-
patibility after local and systemic administration and did
not reveal any disturbances of the eggs [367]. The systematic
study showed independence regarding the (i) hydrolysis tem-
perature, (ii) sulfuric acid concentration, (iii) hydrolysis time,
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(iv) origin of the material or even the (v) degradation
technique.

Despite the biocompatibility studies cited here, cell uptake
and interactions in the body are strongly governed by details
like surface charge and chemistry [368,369], and further
in vivo research and bioaccumulation studies are likely needed
before CNCs can be considered safe for some of the anticipated
medical, food and cosmetic applications. Importantly, CNC
production is considered safe (placing CNCs on the “non-
toxic” domestic substance list in Canada, by Environment
Canada), inhaled spray-dried CNC powders have not shown
negative effects on the lungs [370,371], and ecotoxicological
characterization shows CNCs have low toxicity potential and
environmental risk [372].

To date, many examples of CNCs in gels/foams/aerogels
[329], microencapsulation [321,373], and emulsions (described
above) have been reported. Envisioned food applications are sim-
ilar to the already in-place use of cellulose derivatives and micro-
crystalline cellulose, where the CNC advantage is high specific
surface area and their whisker shape. More specifically, CNCs
have been proposed as food stabilizers [374], agents to protect
or carry scents and flavors [321,375,376] and as food coatings/
edible films [377-379] but to date no work has shown their com-
mercial use or approval in food grade products. Some more tradi-
tional paper/board coating and reinforcement applications, as
well as packaging applications, are also projected for CNCs where
biodegradable (and “smart”) food packaging seems particularly
promising [380].

In recent years, CNCs have been explored for their use in
water purification systems such as hydrogel beads for the
removal of aqueous dyes [381], water filtration membranes
[382-384], nanocomposite heavy metal sensors and absorbents
[385,386], aerogels [387], flocculants, and nanocomposite filters
for groundwater mediation [388]. A recent comprehensive
review covers the use of nanocelluloses in water treatment tech-
nologies [264].

Finally, CNCs are expected to find use in cosmetic products
such as lotions, soaps, hair treatments and anti-drip and color-
enhancing agents, as discussed at conferences and seen in the
patent literature. Cosmetic companies including L’Oréal have
shown interest in these biocompatible, biodegradable and bio-
based nanomaterials.

Paints, adhesives, coatings, and composites — Again, the stabiliz-
ing and reinforcing abilities of CNCs promise to enhance latex-
based applications such as paints, adhesives, and coatings and
make their production processes more environmentally friendly
(e.g., by replacing solvent-based polymerization methods and/or
components like synthetic surfactants). Simply mixing CNCs
and synthetic latexes (or in situ polymerization) can dramatically
improve properties such as mechanical strength [389], shear/peel
strength and tack [323,390] and 3M was the first company to
patent the use of CNCs in pressure sensitive adhesives (PSAs)
Fig. 16 highlights the improvement in all performance metrics
for a butyl acrylate/methyl methacrylate latex-based PSA with
CNCs: increasing the CNC loading increases shear, tack and peel
and adhesives synthesized in the presence of CNCs outperform
the latex/CNC blends, possibly due to crosslinking and improved
film formation [390].

A commercial wood-based adhesive containing CNCs is
already on the market, and the use of CNCs as adhesives them-
selves has been shown [391]. Other highly investigated coating
systems with CNCs include both solvent and waterborne latexes
and epoxies such as polyurethanes, acrylics, polyvinyl alcohol
and elastomers [392-394]. Patents in this area are quickly
increasing [379] highlighting the potential of protective,
hydrophobic and functional coatings [395], for example, using
modified CNCs or photocurable resin/CNC blends for wood
and other substrate protection [396-398].

The rigid nature of CNCs also allows for their use in composite
fiber applications. The most commonly reported method for pro-
ducing CNC reinforced fibers is by electrospinning. Polymers
such as poly(acylic acid) [399], poly(ethylene oxide)[400], and
poly(lactic acid) [401] have been combined with CNCs to prepare
fibers with improved mechanical strength. Lignin-CNC compos-
ite fibers [402] and all cellulose fibers [403] have also been pre-
pared and show promise as “all green” materials. Furthermore,
incorporating CNCs into automotive parts (plastic and foam
composites) is feasible given that other bio-based components
and fibers have already been adapted where light-weighting is a
top priority, by companies like Woodbridge and Ford. Compa-
nies such as 3M, Avery-Dennison, BASF, Cabot Corporation,
Dow, Nike, and Xerox have expressed interest in incorporating
CNCs into their existing and future products.

Nano-scale drug carriers using nanocellulose

The nanocellulose market was predicted to register a market size
with a value of $250 million by 2019 [404]. In line with this, the
number of scientific reports about nanocellulose in medical and
pharmaceutical applications has steadily increased over the last
ten years. In this chapter, the focus is placed on drug carriers
based on nanocellulose. But even more, there are further investi-
gations on the enabling of different bioactive functionalities and
interactions including cell cultivation media and anti bacterial as
well as anti-viral effects of functional nanocelluloses [405-407].

180 —a— Blend-peel strength —A— In situ-peel strength

—&— Blend-tack —&—In situ-tack
«+-e-+- Blend-shear strength -+©-+ In situ-shear strength

160

140

120
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80
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60

Tack, Peel strength (N/m)
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FIGURE 16

Shear strength, tack, and peel strength increase with CNC loading in poly
(butyl acrylate/methyl methacrylate) pressure sensitive adhesives prepared
by emulsion polymerization. Closed symbols represented blended latex +
CNC systems, while open symbols refer to samples produced with CNCs
in situ during emulsion polymerization. Reproduced from Ref. [390] with
permission from Elsevier.
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In addition, chemical grafting (such as those shown above in
Fig. 14) in aqueous conditions opens up the possibility to modify
nanocelluloses [408]. Nevertheless, the number of products in
the medical and pharmaceutical field that make it to the market
is still low, and this is attributed to challenges such as the formu-
lation of highly lipophilic or high molar mass drugs, the time
and spatial control of especially long-term drug release and the
limited up-scale of production to large batches.

In the field of drug formulation, the success story of nano- and
micro-celluloses started when they were demonstrated as effec-
tive excipients including tablet binders and fillers, film coatings,
or as tablet matrices. For example BNC powder showed a higher
bulk density, better flowability, easy fragmentation of particles
and rearrangement at a lower compression load, less elastic
recovery and a higher tensile strength and overall improved
the processability in tablet and capsule formulations compared
to microcrystalline cellulose (e.g., Avicel® 101) [409]. The quality
of BNC films intended for the coating of solid dosage forms was
found to be comparable to commercial products with regard to
tensile strength, elongation and elasticity modulus [410].

The fact that the unique supramolecular 3D nanostructure is
capable of holding a large amount of active ingredients, has
opened the venue to extensive activities in the development of
nanocellulose-based controlled drug delivery systems. In particu-
lar the renewability, facile derivatization, high biocompatibility
as well as the animal- and human free origin render nanocellu-
lose highly attractive as a drug carrier [10]. Although the number
of basic research reports is still growing, there are only a few
nanocellulose-based carriers containing active ingredients in late
stage clinical trials or even on the market.

Three categories of nanocellulose materials have been
described as drug carriers: planar hydrogels (fleeces, films, mem-
branes, coatings) [410-413], CNFs [414,415] as well as CNCs
[416-419], with the two latter preferentially formulated as
nano- and microparticles, gels, or suspensions [9]. For the entrap-
ment of drugs these materials were used in the wet native
[37,420,421], dried (freeze-dried, critical point dried) [422] or
semi-dried [413,423] form, as well as air-dried materials with a
shape memory effect [29,424]. After freeze-drying of BNC uptake
and release of drugs (e.g., albumin) were found to be reduced due
to changes of the fiber network [425], which is why often semi-
dried matrices were preferred.

The drug loading strategies for nanocelluloses preferentially
encompassed loading techniques after the production of the
material (“post synthesis loading”) based on static or agitated
adsorption [37,426], boiling [427], coating [428] as well as soak-
ing techniques for semi-dried and dried nanocellulose [413,429],
as they are easy to perform under mild conditions without
impairment of drug stability or efficacy. High-speed loading tech-
niques accomplishing drug incorporation within about 15 min
(soaking, vortexing) were preferred for drugs with low stabilities
compared to adsorption techniques that take 24-48 h as well as
for industrial time-effective settings. Drug entrapping strategies
for CNFs or CNCs are, for example, performed by spraying
[415], crosslinking [419,430], concurrent drying [414], or electro-
static interactions with or without previous surface modification
[431-433]. Typical drug release profiles of BNC, CNFs, or CNCs
are characterized by a biphasic trend with a fast initial burst

release in the first few hours (0.5-10 h) followed by a slower
release phase up to 72 h (Fig. 17), and based on the Fickian diffu-
sion law or the Peppas’ semi-empirical power law equation which
demonstrates the overlay of diffusion and swelling [418-420,
427,434-436]. The majority of papers report biphasic release pro-
files mostly for water-soluble drugs and small molecules, but also
macromolecular drugs or peptides and proteins can be incorpo-
rated in BNC, CNFs, or CNCs (see Table 3).

Larger hydrophilic drugs such as povidone-iodine demon-
strated a delayed release out of BNC mostly due to the high molar
mass of the drug [411]. As an example of small-sized drugs, in the
fast initial release phase over 8 h only about 46% povidone-
iodine compared to 67% polyhexanide were released. Further-
more, polyhexanide reached equilibrium conditions after 24 h
whereas povidone-iodine showed comparable values only after
longer release times of 48 h.

Still challenging is the controlled release of highly lipophilic
drugs due to their incompatibility with the hydrophilic character
of the nanocelluloses [412,426,432]. Cetyl trimethylammonium
bromide-coated CNCs bound significant quantities of the
hydrophobic drugs docetaxel, paclitaxel, and etoposide followed
by about 20-26% release in the first hours and a longer release
period of 2-4 days [432]. Alternative approaches favored the
covalent binding of drugs to CNCs [444,445], but BNC was also
covalently  grafted  with RGDC  peptide by  3-
aminopropyltriethoxysilane followed by covalent binding of
gentamycin to improve interactions with cells as well as antimi-
crobial properties [446].

To overcome the typical release profiles described above,
nanocelluloses have been functionalized either through chemi-
cal modification or physical incorporation and blending such
as coatings/shells, fillers, or matrices to strengthen drug binding,
increase stability, or prolong drug release [447,448] and to
expand the portfolio of applicable drugs. “Smart” nanocelluloses
were reported to react to environmental stimuli such as temper-
ature [449], pH [419] or electric fields [450] to promote controlled
drug release at specific locations or targets. Thermosensitive poly
(N-isopropylacrylamide) brushes grafted on the surface of BNC
reversibly collapsed above the lower critical solution temperature
of the polymer (32 °C) leading to the formation of a protective,
dehydrated shell which significantly reduced water exchange
and enabled better reswelling after heat treatment [449]. pH sen-
sitivity is a typical example to trigger a controlled gastrointestinal
release using ionizable polymers like sodium alginate [419], poly
(acrylic acid) (PAA) [440], poly(N-methacryloyl glycine) [451],
gelatin [452,453], carboxymethylcellulose [454]| or resilin-like
polypeptides [455] grafted or blended to nanocellulose. For
example BNC-g-PAA protected loaded albumin in the acidic gas-
tric fluid (pH 1.2) with a cumulative release of less than 10%,
while after deprotonation of the carboxylic groups of PAA in
intestinal fluid (pH 6.8) the protein could be released up to
90% due to an enhanced swelling because of electrostatic repul-
sion [440]. Ionization-dependent swelling and release could also
be achieved by applying an electric stimulus as shown for
sodium alginate-nanocellulose composites [450]. The hybrid
hydrogels showed an increasing swelling ratio from 8 to 14 times
its dry weight under an increasing applied voltage up to 0.5 V fol-
lowed by a release rate dependent on the applied electric
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Nanoparticles
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Strategies based on the combination of nanocellulose and further carriers to accomplish the controlled fast and prolonged release of drugs.

TABLE 3

Overview of drugs incorporated into BNC, CNFs, or CNCs.

Antiseptics Octenidine [420], polyhexanide, povidone-
iodine [411]

Lidocaine [413], procaine [437]

Paracetamol [410], ibuprofen [435], diclofenac
[423], theophylline [419], indomethacin
[414,415], berberine [427], beclomethasone

[414,438]

Local anesthetics
Analgetics and
antiphlogistics

Antibiotics Tetracycline [434], gentamycine, ampicillin [439]
Antihypertensives Propranolol [432], metoprolol, verapamil [434]
Cytostatics Doxorubicine [425], paclitaxel [432]

Natural extract
Peptides or proteins

Scrophularia striata Boiss. Extract [412]
Albumin [425,430,440], laccase [441], lipase
[442], lysozyme [443]

strength. For example, after 8 h, the amount of drug released at
0.5 V was twice as high as that of 0 V. For other cellulose-based
hydrogels a similar stimuli-responsive drug release could be
obtained during shrinking or swelling of the material as a func-
tion of an external stimulus such as pH or temperature as shown
for insulin [456], oxaliplatin [457], ketoprofen, and albumin
[458].

Combinations of micro- or nanoparticles [426,438,459],
cyclodextrins [412,418,460], micelles or gels [37] with BNC or
CNCs accomplished higher loading efficiencies, revealed addi-
tional retarding barriers and were preferentially used to prolong
drug release (Fig. 17). As an example, the in situ formation of
Poloxamer 407 gels (18.5%) in the BNC network reduced the
burst release and retarded the release of octenidine up to 196 h
compared to 24 h of the BNC alone [37].

In conclusion, tremendous attention has been given to better
understand the interactions between nanocellulose carriers and
drugs and the evaluation of basic concepts in the last 10 years.
Although several loading techniques were developed and differ-
ent release profiles adapted, all these strategies mostly follow
the same principles. For the next generation of nanocellulose car-
riers more sophisticated release concepts are suggested to be in
the focus for immediate and sustained drug release as well as for-
mulations for critical drugs (e.g., highly lipophilic, unstable or
large sized). Furthermore, since only limited reports that over-
come the barriers to practice with descriptions of applications
in the body are available, the transfer from the laboratory bench
to real applications seems to be the next step.

When thinking about medical and pharmaceutical applica-
tions of nanocellulose, especially BNC, it has to be taken into
consideration that cost-effective and fast production processes
are required which can be afforded by the healthcare systems.
As described above, several production concepts are underway
with the potential to be not only effective and affordable in a
few years, but also to have an advantage in competition due to
the high reproducibility of the materials and homogeneity of
the 3D network structures.

Economics of nanocelluloses

A variety of market reports and guides for end users have been
published forecasting the nanocellulose market, including from
companies such as Future Markets Inc. [276], Global Industry
Analysts Inc., Allied Market Research, Vireo Advisors, RISI, Mar-
ket Intel, LLC and a new book “Nanocellulose Producers, Prod-
ucts, and Applications: A Guide for End Users” published by
TAPPI [395]. The unifying themes have been the need to look
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for high value and/or high volume applications and understand
the value proposition, for example, in terms of light-weighting,
low loading requirements and replacing other (undesirable)
materials. As such, the cost of nanocellulose per kilogram should
not be the “end all” metric in the value proposition [461].

The key measures to reduce BNC production costs are (i) the
use of alternative feedstocks especially plant wastes, (ii) novel
bioreactor designs and (iii) scale-up (see also Section Up-scaled
production). A detailed discussion of BNC production costs is dif-
ficult, since this is information most producers want to protect.
In addition, whether a BNC-based product is competitive
strongly depends on the specific application, the production
scale in relation to the market need, and the material quality
(which again depends on specific bacteria strains, choice for cer-
tain feedstocks and bioreactor design). Thus, a high-price
implant material, for example, a first artificial heart bypass, can
be more competitive than a Nata de Coco-based food thickener
obtained in mass production. There are no standard answers
regarding BNC production costs that can be given at this point.

The economics of making CNF materials is primarily depen-
dent on the type of fiber pre-treatment (e.g., enzymatic, car-
boxymethylation, TEMPO-modified CNF etc.). The cheapest
process is probably the enzymatic pre-treatment process, where
the cost for making CNF from the pulp integrated in a pulp mill
is 0.4 €/kg, which today is in operation in large-scale papermak-
ing applications. For non-integrated use of CNF in papermaking
applications, the cost including pulp cost and profits should be
lower than 2.5 €/kg [462]. Additionally, the cost for CNC-
production may be taken as a guideline to estimate the cost for
the manufacture of carboxymethylated CNF. For TEMPO-
modified CNF, the recycling of the TEMPO catalyst is necessary
in order to decrease the cost, but this is still proprietary
technology.

Similar to BNC and CNF, the cost of production of CNCs
depends on the isolation route and attainable yields — currently
the largest scale production (and most uniform and reproducible
commercially available CNCs [279]) uses the sulfuric acid hydrol-
ysis process. Sulfuric acid is low cost (and can be recycled), CNC
yields are high and degraded sugars can be fermented to biofuels
for additional cost benefit; however, separation, heating and dry-
ing processes have high energy demands and associated costs.
Additionally, there are new CNC production methods on the
horizon that may be cheaper. These include oxidation methods,
subcritical water processing/hot-water pre-extraction and more
mild reaction conditions whereby CNCs are produced as one out-
put of the biorefinery process. While sale prices are expected to
drop below 15 €/kg for sulfuric acid hydrolyzed CNCs (and
potentially cheaper for other processes), R&D samples are cur-
rently sold at approximately 800 €/kg. For CNCs, the starting cel-
lulose material quality does not greatly affect the final
nanoparticle performance and as such, using waste streams and
undesirable biomass feeds may help to lower production costs.
Another option that may be more economically viable is the con-
current production of CNF and CNCs (and sugars) using less
harsh reaction conditions, such as demonstrated recently using
dicarboxylic acid hydrolysis [463].

Conclusions

The goal of the present review is to emphasize that nanocellu-
loses are a prime example of natural sources for groundbreaking
applications in materials science and technology. As such, the
focus is directed toward BNC, CNF, and CNC research and devel-
opment which has occurred primarily over the last five years.
Application possibilities are numerous and diverse — from mass-
produced industrial products to high-end medical products. In
some fields, all three types of nanocellulose can be used, while
for other applications the type is more crucial. For example,
BNC is particularly suited for use as scaffolds for cell cultivation
and drug delivery as well as medical implants. Currently some
BNC-based medical products — e.g., SYNTHECEL® Dura Repair
(implant) produced by DePuy Synthes, USA, epicite™ " (wound
dressing) produced by JeNaCell GmbH, Germany, or Celmat
(wound dressing), produced by BOWIL, Poland - are on the mar-
ket. These products are FDA approved and/or CE-certified.

In the case of CNF the main large-scale applications include
papermaking strength additives and composite applications but
also in the fields of rheological modifiers (e.g., food and paint
applications) and the emerging fields of electronic and cosmetic
applications and nanofilter devices. CNCs are most destined as
interface stabilizers, rheological modifiers, as films/coatings and
reinforcing agents in polymer composites but also are non-
toxic and show great potential in biomedical devices as well.

Around the globe, research groups and, increasingly, compa-
nies are extensively working to expand the market for nanocellu-
lose products and to open up totally new application areas. Key
aspects for future development include the design of nanocellu-
loses for specific user requirements, the reduction of production
costs, and the customization/functionalization using post pro-
duction steps and different types of compounding/processing.
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