307 research outputs found

    Energy expenditure in chow-fed female non-human primates of various weights

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until now no technology has been available to study energy metabolism in monkeys. The objective of this study was to determine daily energy expenditures (EE) and respiratory quotients (RQ) in female monkeys of various body weights and ages.</p> <p>Methods</p> <p>16 socially reared Bonnet Macaque female monkeys [5.5 ± 1.4 kg body weight, modified BMI (length measurement from head to base of the tail) = 28.8 ± 6.7 kg/crown-rump length, m<sup>2 </sup>and 11.7 ± 4.6 years] were placed in the primate Enhanced Metabolic Testing Activity Chamber (Model 3000a, EMTAC Inc. Santa Barbara, CA) for 22-hour measurements of EE (kcal/kg) and RQ (VCO<sub>2</sub>/VO<sub>2</sub>). All were fed monkey chow (4.03 kcal/g) ad-libitum under a 12/12 hour light/dark cycle. Metabolic data were corrected for differences in body weight. Results were divided into day (8-hours), dark (12 hours) and morning (2-hours) periods. Data analysis was conducted utilizing SPSS (Version 13).</p> <p>Results</p> <p>Modified BMI negatively correlated with 22-hour energy expenditure in all monkeys (r = -0.80, p < 0.01). The large variability of daily energy intake (4.5 to 102.0 kcal/kg) necessitated division into two groups, non-eaters (< 13 kcal/kg) and eaters (> 23 kcal/kg). There were reductions (p < 0.05) in both 22-hour and dark period RQs in the "non-eaters" in comparison to those who were "eaters". Monkeys were also classified as "lean" (modified BMI < 25) or "obese" (modified BMI > 30). The obese group had lower EE (p < 0.05) during each time period and over the entire 22-hours (p < 0.05), in comparison to their lean counterparts.</p> <p>Conclusion</p> <p>The EMTAC proved to be a valuable tool for metabolic measurements in monkeys. The accuracy and sensitivity of the instrument allowed detection of subtle metabolic changes in relation to energy intake. Moreover, there is an association between a reduction of energy expenditure and a gain in body weight.</p

    Physiological models of body composition and human obesity

    Get PDF
    Correction to Levitt DG, Heymsfield SB, Pierson Jr RN, Shapses SA, Kral JG: Physiological models of body composition and human obesity. Nutrition & Metabolism 2007, 4:1

    Characterization of Arterial Wave Reflection in Healthy Bonnet Macaques: Feasibility of Applanation Tonometry

    Get PDF
    Nonhuman primates are commonly used in cardiovascular research. Increased arterial stiffness is a marker of subclinical atherosclerosis and higher CV risk. We determined the augmentation index (AI) using applanation tonometry in 61 healthy monkeys (59% female, age 1–25 years). Technically adequate studies were obtained in all subjects and required 1.5 ± 1.3 minutes. The brachial artery provided the highest yield (95%). AI was correlated with heart rate (HR) (r = −0.65, P < .001), crown rump length (CRL) (r = 0.42, P = .001), and left ventricular (LV) mass determined using echocardiography (r = 0.52, P < .001). On multivariate analysis, HR (P < .001) and CRL (P = .005) were independent predictors of AI (R2 = 0.46, P < .001). Body Mass Index (BMI) and AI were independent predictors of higher LV mass on multivariate analysis (P < .001 and P = .03). In conclusion, applanation tonometry is feasible for determining AI. Reference values are provided for AI in bonnet macaques, in whom higher AI is related to HR and CRL, and in turn contributes to higher LV mass

    Differential methylation of inflammatory and insulinotropic genes after metabolic surgery in women

    Get PDF
    Context: Biliopancreatic diversion with duodenal switch (BPD-DS), a metabolic bariatric operation, induces durable loss of excess weight and reduced cardiometabolic risk. Altered epigenetic marks are mechanistically associated with environment-driven phenotypic variations. Objective: The current study aimed to compare gene methylation levels before and after BPD-DS to identify epigenetic marks potentially linked to metabolic improvements induced by BPD-DS. Design and patients: Metabolic risk factors and gene methylation levels of 20 women studied mean 12 years (range 4-22) after BPD-DS were compared to those of 20 severely obese surgical candidates as controls, matched for pre-surgical age, body mass index and dyslipidemia and hypertension prevalences. Whole-genome blood DNA methylation analysis enabled between-group differential methylation analyses. We calculated correlations between methylation levels of the most differentially methylated CpG sites and plasma glucose and insulin levels and HOMA-IR. Results: Differential methylation analysis identified 15,343 genes demonstrating at least one differentially methylated CpG site (p<1.43x10-7). Diabetic and inflammation/immune functions were among the most overrepresented from the 200 genes exhibiting the largest group differences in methylation levels. CpG sites methylation levels of genes related to insulin action correlated significantly with fasting insulin levels and homeostatic model of insulin resistance (p≤0.002 for all). Conclusion: These findings suggest that differential methylation levels in obese controls versus treated women may partially explain the durable metabolic improvements after BPD-DS

    Correlations between Hippocampal Neurogenesis and Metabolic Indices in Adult Nonhuman Primates

    Get PDF
    Increased neurogenesis in feeding centers of the murine hypothalamus is associated with weight loss in diet-induced obese rodents (Kokoeva et al., 2005 and Matrisciano et al., 2010), but this relationship has not been examined in other species. Postmortem hippocampal neurogenesis rates and premortem metabolic parameters were statistically analyzed in 8 chow-fed colony-reared adult bonnet macaques. Dentate gyrus neurogenesis, reflected by the immature neuronal marker, doublecortin (DCX), and expression of the antiapoptotic gene factor, B-cell lymphoma 2 (BCL-2), but not the precursor proliferation mitotic marker, Ki67, was inversely correlated with body weight and crown-rump length. DCX and BCL-2 each correlated positively with blood glucose level and lipid ratio (total cholesterol/high-density lipoprotein). This study demonstrates that markers of dentate gyrus neuroplasticity correlate with metabolic parameters in primates

    Maternal hypothalamic-pituitary-adrenal axis response to foraging uncertainty: A model of individual vs. social allostasis and the Superorganism Hypothesis

    Full text link
    Introduction: Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term “social allostasis.” We postulate that maternal food insecurity induces a “superorganism” state through coordination of individual HPA axis response. Methods: Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. Results: Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our dyadic vulnerability index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p \u3c 0.0001) whereas relatively “advantaged” dyads exhibited maternal cortisol increases in response to VFD exposure. Comment: In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a “superorganism” version of HPA axis homeostasis, provisionally termed “social allostasis.

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay BK+B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process BK+B\to K\ell^+\ell^-, where +\ell^+\ell^- is either an e+ee^+e^- or μ+μ\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+ee^+e^- storage ring. Averaging over K()K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(BK+)=(0.650.13+0.14±0.04)×106{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(BK+)=(0.880.29+0.33±0.10)×106{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the BK+B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for BK+B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience
    corecore