17 research outputs found

    Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta

    Get PDF
    Amyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer’s disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear. In this study we investigated the effects of increased levels of neuronal APP or Aβ on mitochondrial metabolism and gene expression, in human SH-SY5Y neuroblastoma cells. Increased non-amyloidogenic processing of APP, but not Aβ, profoundly decreased respiration and enhanced glycolysis, while mitochondrial DNA (mtDNA) transcripts were decreased, without detrimental effects to cell growth. These effects cannot be ascribed to Aβ toxicity, since higher levels of endogenous Aβ in our models do not cause oxidative phosphorylation (OXPHOS) perturbations. Similarly, chemical inhibition of β-secretase decreased mitochondrial respiration, suggesting that non-amyloidogenic processing of APP may be responsible for mitochondrial changes. Our results have two important implications, the need for caution in the interpretation of mitochondrial perturbations in models where APP is overexpressed, and a potential role of sAPPα or other non-amyloid APP fragments as acute modulators of mitochondrial metabolism

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Conformational targeting of intracellular Amyloid-beta oligomers demonstrates their pathological oligomerization inside the endoplasmic reticulum

    No full text
    Ab oligomers (AbOs) are crucially involved in Alzheimer\u2019s Disease (AD). However, the lack of selective approaches for targeting these polymorphic Ab assemblies represents a major hurdle in understanding their biosynthesis, traffic and actions in living cells. Here, we established a subcellularly localized conformational-selective interference (CSI) approach, based on the expression of a recombinant antibody fragment against AbOs in the endoplasmic reticulum (ER). By CSI, we can control extra- and intracellular pools of AbOs produced in an AD-relevant cell model, without interfering with the maturation and processing of the Ab precursor protein. The anti-AbOs intrabody selectively intercepts critical AbO conformers in the ER, modulating their assembly and controlling their actions in pathways of cellular homeostasis and synaptic signalling. Our results demonstrate that intracellular Ab undergoes pathological oligomerization through critical conformations formed inside the ER. This establishes intracellular AbOs as key targets for AD treatment and presents CSI as a potential targeting strategy

    Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer's disease

    No full text
    The 7WD4 and 7PA2 cell lines, widely used as cellular models for Alzheimer's disease (AD), have been used to investigate the effects of amyloid-\u3b2 protein precursor overexpression and amyloid-\u3b2 (A\u3b2) oligomer accumulation on mitochondrial function. Under standard culture conditions, both cell lines, compared to Chinese hamster ovary (CHO) control cells, displayed an ~5% decrease of O2 respiration as sustained by endogenous substrates. Functional impairment of the respiratory chain was found distributed among the protein complexes, though more evident at the level of complex I and complex IV. Measurements of ATP showed that its synthesis by oxidative phosphorylation is decreased in 7WD4 and 7PA2 cells by ~25%, this loss being partly compensated by glycolysis (Warburg effect). Compensation proved to be more efficient in 7WD4 than in 7PA2 cells, the latter cell line displaying the highest reactive oxygen species production. The strongest deficit was observed in mitochondrial membrane potential that is almost 40% and 60% lower in 7WD4 and 7PA2 cells, respectively, in comparison to CHO controls. All functional parameters point to a severe bioenergetic impairment of the AD cells, with the extent of mitochondrial dysfunction being correlated to the accumulation of A\u3b2 peptides and oligomers

    Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer's disease

    No full text
    The 7WD4 and 7PA2 cell lines, widely used as cellular models for Alzheimer's disease (AD), have been used to investigate the effects of amyloid-β protein precursor overexpression and amyloid-β (Aβ) oligomer accumulation on mitochondrial function. Under standard culture conditions, both cell lines, compared to Chinese hamster ovary (CHO) control cells, displayed an ~5% decrease of O2 respiration as sustained by endogenous substrates. Functional impairment of the respiratory chain was found distributed among the protein complexes, though more evident at the level of complex I and complex IV. Measurements of ATP showed that its synthesis by oxidative phosphorylation is decreased in 7WD4 and 7PA2 cells by ~25%, this loss being partly compensated by glycolysis (Warburg effect). Compensation proved to be more efficient in 7WD4 than in 7PA2 cells, the latter cell line displaying the highest reactive oxygen species production. The strongest deficit was observed in mitochondrial membrane potential that is almost 40% and 60% lower in 7WD4 and 7PA2 cells, respectively, in comparison to CHO controls. All functional parameters point to a severe bioenergetic impairment of the AD cells, with the extent of mitochondrial dysfunction being correlated to the accumulation of Aβ peptides and oligomers

    Haptoglobin interacts with Apolipoprotein e and beta-amyloid and influences their crosstalk

    No full text
    Beta-amyloid accumulation in brain is a driving force for Alzheimer's disease pathogenesis. Apolipoprotein E (ApoE) represents a critical player in beta-amyloid homeostasis, but its role in disease progression is controversial. We previously reported that the acute-phase protein haptoglobin binds ApoE and impairs its function in cholesterol homeostasis. The major aims of this study were to characterize the binding of haptoglobin to beta-amyloid, and to evaluate whether haptoglobin affects ApoE binding to beta-amyloid. Haptoglobin is here reported to form a complex with beta-amyloid as shown by immunoblotting experiments with purified proteins, or by its immunoprecipitation in brain tissues from patients with Alzheimer's disease. The interaction between ApoE and beta-amyloid was previously shown to be crucial for limiting beta-amyloid neurotoxicity and for promoting its clearance. We demonstrate that haptoglobin, rather than impairing ApoE binding to beta-amyloid, promotes to a different extent the formation of the complex between beta-amyloid and ApoE2 or ApoE3 or ApoE4. Our data suggest that haptoglobin and ApoE functions in brain should be evaluated taking into account their mutual interaction with beta-amyloid. Hence, the risk of developing Alzheimer's disease might not only be linked to the different ApoE isoforms, but also rely on the level of critical ligands, such as haptoglobin
    corecore