57 research outputs found

    The Greater than Two-fold Cost of Intergration for Retroviruses

    Get PDF
    Sexual reproduction, typically conceived of as a puzzling feature of eukaryotes, has posed an extraordinary evolutionary challenge in terms of the two-fold replicative advantage of asexuals over sexuals. Here we show mathematically that a greater than two fold cost is paid by retroviruses such as HIV during reverse transcription. For a retrovirus replication is achieved through RNA reverse transcription and the effectively linear growth processes of DNA transcription during gene expression. Retroviruses are unique among viruses in that they show an alternation of generations between a diploid free living phase and a haploid integrated phase. Retroviruses engage in extensive recombination during the synthesis of the haploid DNA provirus. Whereas reverse transcription generates large amounts of sequence variation, DNA transcription is a high fidelity process. Retroviruses come under strong selection pressures from immune systems to generate escape mutants, and reverse transciption into the haploid DNA phase serves to generate diversity followed by a phase of transcriptional clonal expansion during the restoration of diploidity

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    A Large-Scale Full GBA1 Gene Screening in Parkinson's Disease in the Netherlands

    Get PDF
    Background: The most common genetic risk factor for Parkinson’s disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson’s disease from a single large population. Methods: The GBA1 gene was assessed in 3402 Dutch Parkinson’s disease patients using nextgeneration sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson’s disease was compared in carriers and noncarriers. Results: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of c

    Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA

    Get PDF
    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2

    Extraction of the gluon density of the proton at x

    Full text link

    Cognitive ecology A theoretical perspective

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D188980 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Robustness and complexity co-constructed in multimodal signalling networks

    No full text
    In animal communication, signals are frequently emitted using different channels (e.g. frequencies in a vocalization) and different modalities (e.g. gestures can accompany vocalizations). We explore two explanations that have been provided for multimodality: (i) selection for high information transfer through dedicated channels and (ii) increasing fault tolerance or robustness through multichannel signals. Robustness relates to an accurate decoding of a signal when parts of a signal are occluded. We show analytically in simple feed-forward neural networks that while a multichannel signal can solve the robustness problem, a multimodal signal does so more effectively because it can maximize the contribution made by each channel while minimizing the effects of exclusion. Multimodality refers to sets of channels where within each set information is highly correlated. We show that the robustness property ensures correlations among channels producing complex, associative networks as a by-product. We refer to this as the principle of robust overdesign. We discuss the biological implications of this for the evolution of combinatorial signalling systems; in particular, how robustness promotes enough redundancy to allow for a subsequent specialization of redundant components into novel signals
    corecore