292 research outputs found

    Fluid-plasticity of thin cylindrical shells

    Get PDF
    Dynamic plastic response of a thin cylindrical shell, immersed in a potential fluid initially at rest and subjected to internal pressure pulse of arbitrary shape and duration, is examined. The shell is assumed to respond as a rigid-perfectly plastic material while the fluid is taken as inviscid and incompressible. The fluid back pressure is incorporated into the equation of motion of the shell as an added mass term. Since arbitrary pulses can be reduced to equivalent rectangular pulses, the equation of motion is solved only for a rectangular pulse. The influence of the fluid in reducing the final plastic deformation is demonstrated by a numerical example

    Statistical mechanics of damage phenomena

    Full text link
    This paper applies the formalism of classical, Gibbs-Boltzmann statistical mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. Stochastic topological behavior in the system is described in terms of an effective temperature parameter thermalizing the system. An equation of state and a topological analog of the energy-balance equation are obtained. The formalism of the free energy potential is developed, and the nature of the first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin

    Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    No full text
    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activit

    Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena: II. Spinodal behavior

    Full text link
    This paper investigates the spinodal behavior of non-thermal damage phenomena. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. In the vicinity of the spinodal point the power-law scaling behavior is found. For the meanfield fiber-bundle model the spinodal exponents are found to have typical meanfield values.Comment: Version related: More careful explanation for the critical slowing-down. General: The topological properties of non-thermal damage are described by the formalism of statistical mechanics. This is the continuation of arXiv:0805.0346. Comments, especially negative, are very welcom

    Universality behind Basquin's law of fatigue

    Full text link
    One of the most important scaling laws of time dependent fracture is Basquin's law of fatigue, namely, that the lifetime of the system increases as a power law with decreasing external load amplitude, tfσ0αt_f\sim \sigma_0^{-\alpha}, where the exponent α\alpha has a strong material dependence. We show that in spite of the broad scatter of the Basquin exponent α\alpha, the fatigue fracture of heterogeneous materials exhibits intriguing universal features. Based on stochastic fracture models we propose a generic scaling form for the macroscopic deformation and show that at the fatigue limit the system undergoes a continuous phase transition when changing the external load. On the microlevel, the fatigue fracture proceeds in bursts characterized by universal power law distributions. We demonstrate that in a range of systems, including deformation of asphalt, a realistic model of deformation, and a fiber bundle model, the system dependent details are contained in Basquin's exponent for time to failure, and once this is taken into account, remaining features of failure are universal.Comment: 4 pages in Revtex, 4 figures, accepted by PR

    On the Occurrence of Finite-Time-Singularities in Epidemic Models of Rupture, Earthquakes and Starquakes

    Full text link
    We present a new kind of critical stochastic finite-time-singularity, relying on the interplay between long-memory and extreme fluctuations. We illustrate it on the well-established epidemic-type aftershock (ETAS) model for aftershocks, based solely on the most solidly documented stylized facts of seismicity (clustering in space and in time and power law Gutenberg-Richter distribution of earthquake energies). This theory accounts for the main observations (power law acceleration and discrete scale invariant structure) of critical rupture of heterogeneous materials, of the largest sequence of starquakes ever attributed to a neutron star as well as of earthquake sequences.Comment: Revtex document of 4 pages including 1 eps figur

    Bursts in a fiber bundle model with continuous damage

    Full text link
    We study the constitutive behaviour, the damage process, and the properties of bursts in the continuous damage fiber bundle model introduced recently. Depending on its two parameters, the model provides various types of constitutive behaviours including also macroscopic plasticity. Analytic results are obtained to characterize the damage process along the plastic plateau under strain controlled loading, furthermore, for stress controlled experiments we develop a simulation technique and explore numerically the distribution of bursts of fiber breaks assuming infinite range of interaction. Simulations revealed that under certain conditions power law distribution of bursts arises with an exponent significantly different from the mean field exponent 5/2. A phase diagram of the model characterizing the possible burst distributions is constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio
    corecore