L
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

*
FLUID-PLASTICITY OF THIN CYLINDRICAL SHELLS

Dusan Krajcinovic
University of Illinois at Chicago Circle

M. G. Srinivasan and Richard A. Valentin
Argonne National Laboratory

SUMMARY

The paper considers dynamic plastic response of a thin cylindrical shell,
immersed in a potential fluid initially at rest, subjected to internal
pressure pulse of arbitrary shape and duration. The shell is assumed to re-
spond as a rigid-perfectly plastic material while the fluid is taken as
inviscid and incompressible. The fluid back pressure is incorporated into
the equation of motion of the shell as an added mass term. Since arbitrary
pulses can be reduced to equivalent rectangular pulses, the equation of mo-
tion is gsolved only for a rectangular pulse. The influence of the fluid in
reducing the final plastic deformation is demonstrated by a numerical example.

FORMULATION OF THE PROBLEM

Consider a rigid-ideally plastic, thin-walled, circular, cylindrical shell
of infinite length. The shell is surrounded by a pool of potential (inviscid
and incompressible) fluid infinitely extended in all directions. The shell
is subjected to an internal pressure pulse P(z,t), varying both along the axis
and with time. P(z,t) is further assumed to be axisymmetric and symmetric in
z with respect to z = 0 (fig. 1).

This paper examines the influence of the fluid in reducing the plastic
(residual) deformation of the shell. It is known that the pressure with
which potential fluid resists the motion of a deforming solid can be con-
sidered as an increase in the inertia of the solid. Therefore in order to
solve the problem it is necessary to establish the so-called effective mass
consisting of the actual mass of the shell and the added (virtual) mass
reflecting the fluid resistance. Then the problem is reduced to the analysis
of a shell deforming in vacuum. For the sake of continuity, we will adopt
the notation introduced in reference 1.

GOVERNING EQUATIONS

The equation of motion of the shell is:
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—5 =P -P_ - = - pH (1)

where M is the axial bending moment, N the circumferential (hoop) normal
force, R, H and p the radius, the wall thickness and the mass density of the
shell respectively, V the radial velocity of the points on the middle surface
of the shell, and P(z,t) and Pg(z,t) are the externally applied pressure pulse
and the back pressure of the fluid resisting the motion of the shell
respectively.

We assume that the yield condition in the M,N space is defined by the
limited interaction curve of fig. 2. The implications of this assumption are
discussed in detail by Drucker (ref. 2) and Hodge (ref. 3). The yield values
My and N_ are given by

y
-1 =
My i HRP Ny RP (2)
where
- H
P, = Oy R (3

with Oy being the yield stress.

It is known (see, for example, ref. 1) that four different phases (modes)
of plastic deformation may occur during the motion. We will consider herein
only one of these phases which occurs for all possible types of loading,
though this restricts the magnitude of the loading to a certain limit. In
the considered phase the deformation is characterized by a stationary plastic
hinge circle at z = 0 and two moving hinge circles at z = + g(t).

It can be shown (see, for example, Eason and Shield (ref. 4)) that the
plastic regimes (see fig. 2) are as follows:

z=0: M= -M s N =N Regime A
y y
z=r: M=M N=N Regime B 4
4 . s v g (4)
O<z<pg: -M <M<M, N=N Regime AB
y y y

Thus, from the normality of the strain-rate vector to the yield surface,

2%

5 o , V>0 for 0<z < (5)
3z

For this deformation mode the velocity, V(z,t), is therefore a linear function

of z, i.e.,
V (£) <1 - z 0<z<g¢z
o z(t) -

0 z >z

V(z,t) = (6)
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In the above equations and in the sequel because of symmetry it is enough to
consider only half of the shell z > 0.

DETERMINATION OF THE ADDED MASS

Before attempting to solve equation (1), the backpressure Pf(z,t) should
be determined as a function of V(z,t) and its derivatives. The equation
governing the flow of the potential fluid is in polar coordinates

2 2

3F + §E,+ 3F _ 0 in r >R (7)
2 or 2

or 9z

s

where F(r,z,t) is the fluid velocity potential.

As the shell is impermeable, the velocities of the fluid and the shell
at the points of contact must be identical, i.e.,

— =V at r =R (8)

Furthermore, from the radiation principle,

oF JF

g o , Y 0 as max(r,z) > ® 9)
Once the fluid velocity potential- is determined from the Laplace equa-

tion (7), subject to the boundary conditions (eqgs. (8) and (9)) the pressure

exerted by the fluid on the shell can be computed from the Cauchy integral,

_o JF
Pf Bt

v-~>-0 |,

Pe(z,t) = at r =R (10)

where pg is the mass density of the fluid.

The equations (7) and (10) imply the assumption that the perturbations
about average values can be neglected.

As a further approximation, we will assume that the functional relation
between Pg(z,t) and ¢ is not sensitive to the time dependence of r, and hence
z may be treated as a constant for the determination of this relation. Then
in view of equations (6), (7) and (8), we may write

F(r,z,t) = Vo(t) f(r,2) (11)
and from equation (10),
dVo
P.(z,t) = —pff(R,Z) ra (12)

where —pff(R,z) is the added (virtual) mass arising due to the resistance of
the fluid being displaced by the shell.

Substituting equations (11) and (6), (with ¢ being constant) into equa-
tions (7) to (9), it follows
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9°F . 1 of , 3°f _
s tra T 20 2
or 09z
subject to
(1—%) at T=R, z<5¢
of
o | (14)
r 0 at r=R, z>¢
and
of of
£f+0 , 5;.+.0 T vl 0 as max(r,z) > (15)

The details of the solution of equation (13) are omitted herein for the
sake of brevity. A closed form integral solution is obtained after intro-
ducing the Fourier cosine transform. The argument of this integral is
rather complicated and the integration is performed in three stages using
asymptotic formulae and Filon's method, subject to the restriction, 7 < R-
which is subsequently seen to be not severe. In order to make this numerical
solution amenable for substitution into equation (1), the result is subjected
to a series of polynomial regression analyses. Finally we obtain

f(R,z) = -R {go (%) + 8, (-1%) zz—} (16)

where
(x) = B, + B.x + B.x° + 8% (17)
& 0" *1 2 3
and g . (x) = a,+a.x+a x2 + o x3 (18)
1 0 1 2 3
with ay = . 004994512 BO = ,02050149
a, = -.5420473 Bl = 1.664447
(19)
a, = -.1058701 Bz = -1.105309
o, = .1627719 83 = ,4096600

Note aj and By are dimensionless constants that do not depend on the shell/
fluid parameters.

PLASTIC DEFORMATION OF THE SHELL
Equation (l) now becomes, in view of equations (2), (6), (12) and (16),

o z ' W oz Y
4= renn-{{omeogteg (g -foner (8) 2]
Z

in0<z<¢g (20)

=

|

3S]
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In equation (20), ¢ = t(t). For arbitrary P(z,t) the above equation may only
be solved by numerical methods. As a first step in simplifying the work, the
approach introduced by Youngdahl (ref. 1) will be used to approximate a com-
plex loading function by (i.e., correlate it to) a simple rectangular pulse.
Since the standard limit analysis of the shell is independent of any sur-
rounding medium, the method given by Youngdahl (ref. 1) to determine the
equivalent rectangular pulse does not need any modification in this case.
Thus correlated, P(z,t) can be expressed as

]

P(z,t) = P lz| < L and 0z tc<t
e e

(21)
P(z,t)

0 lz] >L or t>t
e

where P, is the magnitude, t, the duration and 2L the length of the loaded
area of the equivalent rectangular pulse (see ref. 1 for their derivation).

For plastic deformation to occur, Pe must be greater than the limit load.
This condition is expressed by (see ref. 1)

P

P o> -2 |1 47/1 + 288 (22)
e 2 2

Le

For the deformation to take place in the assumed phase, the following
boundary conditions must be satisfied

M=-M , H_o at z=0
v 3z
(23)
_ oM - - )
M= M& , Sz 0 at =z z

Further, the condition that the bending moment does not exceed M& at the
hinge circle at z = ¢ implies

2
é—% <0 at z = ¢ o (24)
92

In addition the condition that the bending moment cannot be less than -MY at
the hinge circle at z = 0 implies

2
TH>0 at z=0 (25)
oz .

For the interval 0 < t £ tgo, a trial solution as in the case of a shell
leforming in vacuum is assumed. This is taken in the form

g(t) = zy
0O<stz<t (26)
d v .S ¢
n o(t) = OH t

there z; and K; are constants. Substituting equation (26) into equation (20)
ind integrating twice subject to the boundary conditions (23) yields in the
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end two equations for zj and Kj. These two can be reduced to:

| a(zl)Pozi +16 -4z P L 2, - {6 - 3a(z,) }(PeLi +P_RH) = 0 (27
and )
‘. - 6p1:(PeLezl P_L zjORH) o)
%1 {"H "PeREy (’1‘{)}
where

a(zy) = - (29)
pH+pf Rgo (—k—)
The inequalities (24) and (25) can be written in the form
o z Z
2 fR 1 1 2
— = — — >
Poz]_ + K1 o H {go (R) + 8, (R)} zy 0 (30)
2 2
and 4PeLezl - Pezl - 3PeLe - 3P RH < 0 (3D

From equations (17), (18) and (19) it is easily verified that inequality
(30) is always satisfied. 1If inequality (31) is not satisfied motion.cannot
start in the phase assumed. When the inequality becomes an equality, P, takes
the bounding value. To determine the bounding value of P,, the non-linear
equations (27) and (31) should be solved simultaneously. This is done
numerically. Figure 3 shows the range of values of P, that satisfies in-
equalities (22) and (31) and hence gives rise to deformation in the assumed
mode. For a Pg belonging to this range, the non-linear equation (27) may be
solved numerically. Also it may be verified that the restriction z1 < R is
always satisfied if Lo < R. Thus, the solution discussed in this paper is
valid for L, < R and P, satisfying inequalities (22) and (31).

For t > tg, there is no internal pressure. Letting P(z,t) = 0 in equa-
tion (20), integrating it twice with respect to z and substituting the result
into the boundary conditions (23), we arrive at the following equations

av_ -P, (z2 + 3RH)
T o - 6 (z) (32)
z {0H+pf Rgo (E)}
v ~-6P _RH
£ (—9) - o = ¥ (o) (33)
T 3 z
z {pH- PeRE (E)}

Equations (32) and (33) constitute a system of non-linear. first order differ-
ential equations for Vo and ¢, the initial conditions being given by
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C(te) =z . (34)

Klte
pH

vo(te) = (35)

The above differential equations are valid only for te sttt

< where tf is
defined by

f’

Vo(tf) =0 ‘ ‘ ‘ (36)
We will denote
= v 37
Ce = T(ty) (37
From equations (32) and (33), we can express Vo as,
P X 2
Vo(t) _ ZZ; 6RH ~ - 3R+ - (38)
o () \em-ocrey (5) emte e, (g
From (36) and (37), we see that [ can be obtained from the equation,
2
3RH + ¢
6RH B f -0 4 (39)

°f bt
pH-prgl(qg) pH+pr50(Eﬂ

Equation (39) can be solved numerically to obtain zg¢. It is noted that
tg depends only on the shell parameters H and R and the density ratio pg/p.
Since zf is the quantity that is known and not tg, the equations (32) and
(33) are now reformulated with ¢ being the independent variable and t(z) and
Vo(g) being the dependent wariables. Thus,

av

‘;ﬁ? = g§'¢(£) (40)
and 4 (Vo ac z, = (S Ef
i (—5-) = 3 V@ (41)
The new initial conditions are
t(zl) =t (42)
Klte
and Vo(zl) = oH (43)

Equations (40) and (41) are solved numerically. Finally, the maximum
plastic deformation Uo(t) can be obtained as,

Kltz
Uo(t) = 20H 0 e

[P
()
A
(n)

(44)
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t
and Uo(t) = Uo(te) + Jt Vo(t)dt 0<tzxg tf
e
‘ Klti ¢ —. dt =
= ) =
or 0,0 - me [ V@ EdE g sy (45)
24 dr

The integral in equation (45) can be numerically evaluated after the numeri-
cal solutions Vo(c) and t(z) have been obtained.

For the special case in which 2z coincides with ¢, the solution for
t > t, discussed above is not valid. For this case, equations (32) and (33)
with (35) yield,

T =12z, = (46)
K1te
Yy = - _Lte .
Vo(e) = (- )8(z) + | (47)
where ¢(g) is defined in equation (32). Note ¢(z7) < 0. From equation (47)
we see
%
tf = te 1- B‘I_ﬁ)—(—z‘:p- (48)
From equatibns (47) and (44) we can show that
6(z.) K.t
_ 1 _ 2 le _
Uo(t) =3 (t te) + 2ol (2t te) . (49)

Finally we have, for the maximum plastic deformation in this special case

2

Klte Kl
Uo(tf) = ——é?)ﬁ- (l - E—ﬁm*l—)) : (50)
NUMERICAIL EXAMPLE

For a shell with H/R = 1/36, Le/R = 1/4 surrounded by a fluid of
pf/p = 1/10, the complete numerical solution is determined for the admissible
range of loads P,. As is seen from figure 3, the range of P./P, that will
give rise to motion in the assumed phase is between: 1.33 and 2.97. The
same range for a shell in vacuum is 1.33 to 2.19. Figure 4 shows the final
maximum plastic deformation, U,(tf), (non-dimensionalized as pHUO/POt% ) as a
function of Pg/P,. For the sake of comparison the corresponding curve for a
shell deforming in vacuum is also shown in the same figure.

In the numerical methods used, non-linear algebraic equations such as
(27) and (39) were solved by Newton's iteration method and the system of
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differential equations (40), (41) by a method using automatic step change
(ref. 5).
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Figure l.- Circular cylindrical shell
immersed in fluid and loaded by
internal pressure pulse.

Figure 2.- Yield condition.
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Figure 3.- Range of pulse intensity
initiating motion in assumed phase.
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Figure 4.~ Maximum plastic deformation
as a function of pulse intensity.
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